首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering that the development of hepatic lesions related to iron overload diseases might be a result of abnormally expressed hepatic genes, we searched for new genes up-regulated under the condition of iron excess. By suppressive subtractive hybridization performed between livers from carbonyl iron-overloaded and control mice, we isolated a 225-base pair cDNA. By Northern blot analysis, the corresponding mRNA was confirmed to be overexpressed in livers of experimentally (carbonyl iron and iron-dextran-treated mice) and spontaneously (beta(2)-microglobulin knockout mice) iron-overloaded mice. In addition, beta(2)-microglobulin knockout mice fed with a low iron content diet exhibited a decrease of hepatic mRNA expression. The murine full-length cDNA was isolated and was found to encode an 83-amino acid protein presenting a strong homology in its C-terminal region to the human antimicrobial peptide hepcidin. In addition, we cloned the corresponding rat and human orthologue cDNAs. Both mouse and human genes named HEPC are constituted of 3 exons and 2 introns and are located on chromosome 7 and 19, respectively, in close proximity to USF2 gene. In mouse and human, HEPC mRNA was predominantly expressed in the liver. During both in vivo and in vitro studies, HEPC mRNA expression was enhanced in mouse hepatocytes under the effect of lipopolysaccharide. Finally, to analyze the intracellular localization of the predicted protein, we used the green fluorescent protein chimera expression vectors. The murine green fluorescent protein-prohepcidin protein was exclusively localized in the nucleus. When the putative nuclear localization signal was deleted, the resulting protein was addressed to the cytoplasm. Taken together, our data strongly suggest that the product of the new liver-specific gene HEPC might play a specific role during iron overload and exhibit additional functions distinct from its antimicrobial activity.  相似文献   

2.
Iron is an essential micronutrient promoting oxidative stress in the liver of overloaded animals and human, which may trigger the expression of redox-sensitive genes. We have tested the hypothesis that chronic iron overload (CIO) enhances inducible nitric oxide synthase (iNOS) expression in rat liver by extracellular signal-regulated kinase (ERK1/2) and NF-kappaB activation. CIO (diet enriched with 3%(wt/wt) carbonyl-iron for 12 weeks) increased liver protein carbonylation and decreased reduced glutathione (GSH) content and the GSH/GSSG ratio after 6 weeks, parameters that are normalized after 8-12 weeks of treatment. These changes are paralleled by higher phosphorylated-ERK1/2 to non-phosphorylated-ERK1/2 ratios at 6 and 8 weeks, increased NF-kappaB DNA binding to the iNOS gene promoter at 8-12 weeks, and higher iNOS mRNA expression and activity at 8 and 12 weeks. It is concluded that CIO triggers liver oxidative stress at early times, with upregulation of iNOS expression involving the ERK/NF-kappaB pathway at later times, a finding that may represent a hepatoprotective mechanism against CIO toxicity in addition to the recovery of GSH homeostasis.  相似文献   

3.
Venesection has been proposed as a treatment for hepatic iron overload in a number of chronic liver disorders that are not primarily linked to mutations in iron metabolism genes. Our aim was to analyse the impact of venesection on iron mobilisation in a mouse model of secondary iron overload. C57Bl/6 mice were given oral iron supplementation with or without phlebotomy between day 0 (D0) and D22, and the results were compared to controls without iron overload. We studied serum and tissue iron parameters, mRNA levels of hepcidin1, ferroportin, and transferrin receptor 1, and protein levels of ferroportin in the liver and spleen. On D0, animals with iron overload displayed elevations in iron parameters and hepatic hepcidin1 mRNA. By D22, in the absence of phlebotomies, splenic iron had increased, but transferrin saturation had decreased. This was associated with high hepatic hepcidin1 mRNA, suggesting that iron bioavailability decreased due to splenic iron sequestration through ferroportin protein downregulation. After 22 days with phlebotomy treatments, control mice displayed splenic iron mobilisation that compensated for the iron lost due to phlebotomy. In contrast, phlebotomy treatments in mice with iron overload caused anaemia due to inadequate iron mobilisation. In conclusion, our model of secondary iron overload led to decreased plasma iron associated with an increase in hepcidin expression and subsequent restriction of iron export from the spleen. Our data support the importance of managing hepcidin levels before starting venesection therapy in patients with secondary iron overload that are eligible for phlebotomy.  相似文献   

4.
Iron has long been related to the pathological process of alcoholic liver disease (ALD). Liver iron overload is known to accelerate the development of ALD. In the present study we aimed to examine the effect of epigallocatechin-3-gallate (EGCG) on iron overload of ALD and to explore the potential mechanisms involved in its protection against ALD in mice. Male C57BL/6J mice were given alcohol by intragastric administration for 12 weeks. At the end of 8th week, ALD mice were treated for 4 weeks for 10, 20 and 30 mg kg–1 EGCG by intraperitoneal injection. Liver injuries were assessed by histopathologic examination and Serum Alanine Aminotransferase (ALT) levels. Serum iron content, hepatic iron concentration and liver malondialdehyde (MDA) contents were examined. In addition, hepcidin mRNA levels and transferrin (Tf) and transferrin receptor 1 (TfR1) protein levels of liver tissue were also evaluated. Compared with model group, treatment of ALD mice with EGCG ameliorated liver injuries, decreased serum iron level, hepatic iron levels and liver MDA contents, increased hepcidin mRNA level and decreased Tf and TfR1 protein expression in the liver. The results of our study explain a new point of view that the protective effect of EGCG on ALD is associated with its iron-chelating property. The possible mechanisms are that EGCG affects hepatic iron uptake and inhibits iron absorption in the small intestinal.  相似文献   

5.
6.
Liver iron overload can be found in hereditary hemochromatosis, chronic liver diseases such as alcoholic liver disease, and chronic viral hepatitis or secondary to repeated blood transfusions. The excess iron promotes liver damage, including fibrosis, cirrhosis, and hepatocellular carcinoma. Despite significant research effort, we remain largely ignorant of the cellular consequences of liver iron overload and the cellular processes that result in the observed pathological changes. In addition, the variability in outcome and the compensatory response that likely modulates the effect of increased iron levels are not understood. To provide insight into these critical questions, we undertook a study to determine the consequences of iron overload on protein levels in liver using a proteomic approach. Using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) combined with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), we studied hepatic iron overload induced by carbonyl iron-rich diet in mice and identified 30 liver proteins whose quantity changes in condition of excess liver iron. Among the identified proteins were enzymes involved in several important metabolic pathways, namely the urea cycle, fatty acid oxidation, and the methylation cycle. This pattern of changes likely reflects compensatory and pathological changes associated with liver iron overload and provides a window into these processes.  相似文献   

7.
The peroxisomal 3-ketoacyl-CoA thiolase B (Thb) gene was previously identified as a direct target gene of PPARalpha, a nuclear hormone receptor activated by hypolipidemic fibrate drugs. To better understand the role of ThB in hepatic lipid metabolism in mice, Sv129 wild-type and Thb null mice were fed or not the selective PPARalpha agonist Wy14,643 (Wy).Here, it is shown that in contrast to some other mouse models deficient for peroxisomal enzymes, the hepatic PPARalpha signaling cascade in Thb null mice was normal under regular conditions. It is of interest that the hypotriglyceridemic action of Wy was reduced in Thb null mice underlining the conclusion that neither thiolase A nor SCPx/SCP2 thiolase can fully substitute for ThB in vivo. Moreover, a significant increased in the expression of lipogenic genes such as Stearoyl CoA Desaturase-1 (SCD1) was observed in Thb null mice fed Wy. Elevation of Scd1 mRNA and protein levels led to higher SCD1 activity, through a molecular mechanism that is probably SREBP1 independent. In agreement with higher SCD1, enrichment of liver mono-unsaturated fatty acids of the n-7 and n-9 series was found in Thb null mice fed Wy.Overall, we show that the reduced peroxisomal β-oxidation of fat observed in Thb null mice fed Wy is associated with enhanced hepatic lipogenesis, through the combined elevation of microsomal SCD1 protein and activity. Ultimately, not only the amount but also the quality of the hepatic fatty acid pool is modulated upon the deletion of Thb.  相似文献   

8.
Stearoyl-CoA desaturase-1 (SCD1) has gained much interest as a future drug target to treat fatty liver and its consequences. However, there are few and inconsistent human data about expression and activity of this important enzyme. We investigated activity and expression of SCD1 and their relationships with liver fat (LF) content in human liver samples. Fifty subjects undergoing liver surgery were studied. SCD1 activity was estimated from the ratio of oleate (C18:1) to stearate (C18:0) within lipid subfractions. Furthermore, SCD1 mRNA expression and LF content were measured. Similarly to previous studies, we observed a strong positive correlation between LF content and the C18:1/C18:0 ratio in the combined fatty acid (FA) fractions (r = 0.96, P < 0.0001), which could be interpreted as higher SCD1 activity with increasing LF. However, hepatic SCD1 mRNA expression did not correlate with LF (r = 0.16, P = 0.13). To solve these conflicting data, we analyzed the FA composition of hepatic lipid subfractions. With increasing LF content the amount of FAs from the triglyceride (TG) fraction increased (r = 0.96, P < 0.0001), whereas the FAs from the phospholipid (PL) fraction remained unchanged (r = -0.17, P = 0.19). Of these two major lipid fractions, the C18:1/C18:0 ratio in TG was 16-fold higher than in PL. Supporting the SCD1 mRNA expression data, the C18:1/C18:0 ratio of the TG or PL fraction did not correlate with LF (r = 0.26, P = 0.12 and r = 0.08, P = 0.29). We provide novel information that SCD1 activity and mRNA expression appear not to be elevated in subjects with high LF content. We suggest that the FA composition of lipid subclasses, rather than of mixed lipids, should be analyzed to estimate SCD1 activity.  相似文献   

9.
Both hemojuvelin (HJV) and bone morphogenic protein-6 (BMP6) are essential for hepcidin expression. Hepcidin is the key peptide hormone in iron homeostasis, and is secreted predominantly by hepatocytes. HJV expression is detected in hepatocytes, as well as in skeletal and heart muscle. HJV binds BMP6 and increases hepcidin expression presumably by acting as a BMP co-receptor. We characterized the role of hepatocyte HJV in the regulation of BMP6 and hepcidin expression. In HJV-null (Hjv−/−) mice that have severe iron overload and marked suppression of hepcidin expression, we detected 4-fold higher hepatic BMP6 mRNA than in wild-type counterparts. These results indicate that Hjv−/− mice do not lack BMP6. Furthermore, iron depletion in Hjv−/− mice decreased hepatic BMP6 mRNA. Expression of HJV in hepatocytes of Hjv−/− mice using an AAV2/8 vector, increased hepatic hepcidin mRNA by 65-fold and phosphorylated Smad1/5/8 in the liver by about 2.5-fold. However, no significant change in BMP6 mRNA was detected in either the liver or the small intestine of these animals. Our results revealed a close correlation of hepatic BMP6 mRNA expression with hepatic iron-loading. Together, our data indicate that the regulation of hepatic BMP6 expression by iron is independent of HJV, and that expression of HJV in hepatocytes plays an essential role in hepcidin expression by potentiating the BMP6-mediated signaling.  相似文献   

10.
11.
12.
Aceruloplasminemia is an autosomal recessive disorder caused by mutations in the ceruloplasmin (CP) gene, and is characterized by a unique combination of neurovisceral iron overload and iron deficiency anemia. We generated CP-deficient (CP(-/-)) mice to investigate the functional involvement of CP in iron metabolism. The mice showed a marked iron overload in the liver and mild iron deficiency anemia. We examined the expression of iron-metabolism genes in the duodenum and liver using TaqMan RT-PCR. The divalent metal transporter 1 (DMT1), ferroportin 1 (FPN1), and hephaestin (HEPH) genes were not up-regulated in the duodenum from CP(-/-) mice. These data suggest that the mechanism of hepatic iron overload in aceruloplasminemia is quite different from that in hemochromatoses and atransferrinemia. In the liver, CP(-/-) mice showed no increase of gene expression for DMT1 and transferrin receptors (TFR and TFR2), indicating that none of the known pathways of iron uptake is activated in hepatocytes of CP(-/-) mice. This result supports the hypothesis that CP mainly acts to release iron from cells in the liver.  相似文献   

13.
Chronic iron overload (CIO) enhances nitric oxide (*NO) production in the liver, which may represent a hepatoprotective mechanism against CIO toxicity. In order to test this hypothesis, the influence of CIO (diet enriched with 3% (wt/wt) carbonyl-iron for 8 weeks) in the absence or presence of the (*)NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on NOS activity, extracellular signal-regulated kinase (ERK1/2) and NF-kappaB activation was studied, in relation to ferritin expression and liver morphology. CIO increased liver NOS activity, ERK1/2 phosphorylation, NF-kappaB DNA binding, and ferritin expression, with normal liver histology. These changes were suppressed by combined CIO and L-NAME treatment, with the resulting inflammatory response of the liver. It is concluded that (*)NO response induced by CIO represents a molecular mechanism affording protection against iron toxicity, which is related to both the activation of the ERK/NF-kappaB pathway involving inducible NOS expression and ferritin upregulation, changes that may be interrelated.  相似文献   

14.
The flavonol rutin has been shown to possess antioxidant and iron chelating properties in vitro and in vivo. These dual properties are beneficial as therapeutic options to reduce iron accumulation and the generation of reactive oxygen species (ROS) resultant from excess free iron. The effect of rutin on iron metabolism has been limited to studies performed in wildtype mice either injected or fed high-iron diets. The effect of rutin on iron overload caused by genetic dysregulation of iron homoeostasis has not yet been investigated. In the present study we examined the effect of rutin treatment on tissue iron loading in a genetic mouse model of iron overload, which mirrors the iron loading associated with Type 3 hereditary haemochromatosis patients who have a defect in Transferrin Receptor 2 (TFR2). Male TFR2 knockout (KO) mice were administered rutin via oral gavage for 21 continuous days. Following treatment, iron levels in serum, liver, duodenum and spleen were assessed. In addition, hepatic ferritin protein levels were determined by Western blotting, and expression of iron homoeostasis genes by quantitative real-time PCR. Rutin treatment resulted in a significant reduction in hepatic ferritin protein expression and serum transferrin saturation. In addition, trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity were observed. This is the first study to explore the utility of rutin as a potential iron chelator and therapeutic in an animal model of genetic iron overload.  相似文献   

15.
Stearoyl-CoA desaturase (SCD) is a microsomal enzyme required for the biosynthesis of oleate and palmitoleate, which are the major monounsaturated fatty acids of membrane phospholipids, triglycerides, and cholesterol esters. Two well characterized isoforms of SCD, SCD1 and SCD2, exist in the mouse. Most mouse tissues express SCD1 and 2 with the exception of the liver, which expresses mainly the SCD1 isoform. We found that asebia mice homozygous for a natural mutation of the gene for SCD1 (SCD-/-) are deficient in hepatic cholesterol esters and triglycerides despite the presence of normal activities of acyl-CoA:cholesterol acyltransferase and glycerol phosphate acyltransferase, the enzymes responsible for cholesterol ester and triglyceride synthesis, respectively, in the liver of these mice. Feeding diets supplemented with triolein or tripalmitolein to the SCD-/- mice resulted in an increase in the levels of 16:1 and 18:1 in the liver but failed to restore the 18:1 and 16:1 levels of the cholesterol ester and triglycerides to the levels found in normal mice. The SCD-/- mouse had very low levels of triglycerides in the VLDL and LDL lipoprotein fractions compared with the normal animal. Transient transfection of an SCD1 expression vector into Chinese hamster ovary cells resulted in increased SCD activity and esterification of cholesterol to cholesterol esters. Taken together, our observations demonstrate that the oleoyl-CoA and palmitoleyl-CoA produced by SCD1 are necessary to synthesize enough cholesterol esters and triglycerides in the liver and suggest that regulation of SCD1 activity plays an important role in mechanisms of cellular cholesterol homeostasis.  相似文献   

16.
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids. Thus far, three isoforms of SCD (SCD1, SCD2, and SCD3) have been identified and characterized. Regulation of the SCD1 isoform has been shown to be an important component of the metabolic actions of leptin in liver, but the effects of leptin on SCD isoforms in other tissues have not been investigated. We found that although the mRNA levels of SCD1 and SCD2 were not affected by leptin deficiency in the hearts of ob/ob mice, the SCD activity and levels of monounsaturated fatty acids were increased, implying the existence of another SCD isoform. This observation has led to the cDNA cloning and characterization of a fourth SCD isoform (SCD4) that is expressed exclusively in the heart. SCD4 encodes a 352-amino acid protein that shares 79% sequence identity with the SCD1, SCD2, and SCD3 isoforms. Liver X receptor alpha (LXR alpha) agonists and a high carbohydrate fat-free diet induced SCD4 expression, but unlike SCD1, SCD4 expression was not repressed by dietary polyunsaturated fatty acids. SCD4 mRNA levels were elevated 5-fold in the hearts of leptin-deficient ob/ob mice relative to wild type controls. Treatment of ob/ob mice with leptin decreased mRNA levels of SCD4, whereas levels of SCD1 and SCD2 were not affected. Furthermore, in the hearts of SCD1-deficient mice, SCD4 mRNA levels were induced 3-fold, whereas the levels of SCD2 were not altered. The current studies identify a novel heart-specific SCD isoform that demonstrates tissue-specific regulation by leptin and dietary factors.  相似文献   

17.
18.
19.
Although the recent identification of several genes has extended our knowledge on the maintenance of body iron homeostasis, their tissue specific expression patterns and the underlying regulatory networks are poorly understood. We studied C57black/Sv129 mice and HFE knockout (HFE -/-) variants thereof as a model for hemochromatosis, and investigated the expression of iron metabolism genes in the duodenum, liver, and kidney as a function of dietary iron challenge. In HFE +/+ mice dietary iron supplementation increased hepatic expression of hepcidin which was paralleled by decreased iron regulatory protein (IRP) activity, and reduced expression of divalent metal transporter-1 (DMT-1) and duodenal cytochrome b (Dcytb) in the enterocyte. In HFE -/- mice hepcidin formation was diminished upon iron challenge which was associated with decreased hepatic transferrin receptor (TfR)-2 levels. Accordingly, HFE -/- mice presented with high duodenal Dcytb and DMT-1 levels, and increased IRP and TfR expression, suggesting iron deficiency in the enterocyte and increased iron absorption. In parallel, HFE -/- resulted in reduced renal expression of Dcytb and DMT-1. Our data suggest that the feed back regulation of duodenal iron absorption by hepcidin is impaired in HFE -/- mice, a model for genetic hemochromatosis. This change may be linked to inappropriate iron sensing by the liver based on decreased TfR-2 expression, resulting in reduced circulating hepcidin levels and an inappropriate up-regulation of Dcytb and DMT-1 driven iron absorption. In addition, iron excretion/reabsorption by the kidneys may be altered, which may aggravate progressive iron overload.  相似文献   

20.
The development of alcoholic liver diseases depends on the ability of hepatocyte to proliferate and differentiate in the case of alcohol-induced injury. Our previous work showed an inhibitory effect of alcohol on hepatocyte proliferation. However, the effect of alcohol on hepatocyte differentiation has not yet been precisely characterized. In the present study, we evaluated the effect of alcohol on hepatocyte differentiation in relationship with changes of iron metabolism in HepaRG cells. This unique bipotent human cell line can differentiate into hepatocytes and biliary epithelial cells, paralleling liver development. Results showed that alcohol reduced cell viability, total protein level and enhanced hepatic enzymes leakage in differentiated HepaRG cells. Moreover, it caused cell enlargement, decreased number of hepatocyte and expression of C/EBPα as well as bile canaliculi F-actin. Alcohol increased expression of hepatic cell-specific markers and alcohol-metabolizing enzymes (ADH2, CYP2E1). This was associated with a lipid peroxidation and an iron excess expressed by an increase in total iron content, ferritin level, iron uptake as well as an overexpression of genes involved in iron transport and storage. Alcohol-induced hepatoxicity was amplified by exogenous iron via exceeding iron overload. Taken together, our data demonstrate that in differentiated hepatocytes, alcohol reduces proliferation while increasing expression of hepatic cell-specific markers. Moreover, iron overload could be one of the underlying mechanisms of effect of alcohol on the whole differentiation process of hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号