首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Segref  K Sharma  V Doye  A Hellwig  J Huber  R Lührmann    E Hurt 《The EMBO journal》1997,16(11):3256-3271
An essential cellular factor for nuclear mRNA export called Mex67p which has homologous proteins in human and Caenorhabditis elegans was identified through its genetic interaction with nucleoporin Nup85p. In the thermosensitive mex67-5 mutant, poly(A)+ RNA accumulates in intranuclear foci shortly after shift to the restrictive temperature, but NLS-mediated nuclear protein import is not inhibited. In vivo, Mex67p tagged with green fluorescent protein (GFP) is found at the nuclear pores, but mutant mex67-5-GFP accumulates in the cytoplasm. Upon purification of poly(A)+ RNA derived from of UV-irradiated yeast cells, Mex67p, but not nucleoporins Nup85p and Nup57p, was crosslinked to mRNA. In a two-hybrid screen, a putative RNA-binding protein with RNP consensus motifs was found to interact with the Mex67p carboxy-terminal domain. Thus, Mex67p is likely to participate directly in the export of mRNA from the nucleus to the cytoplasm.  相似文献   

2.
Lund MK  Guthrie C 《Molecular cell》2005,20(4):645-651
Eukaryotic mRNAs are exported from the nucleus to the cytoplasm as complex mRNA-protein particles (mRNPs), and translocation through the nuclear pore complex (NPC) is accompanied by extensive structural changes of the mRNP. We have tested the hypothesis that the DEAD-box ATPase Dbp5p is required for such an mRNP rearrangement. In dbp5 mutant cells, the mRNA export receptor Mex67p accumulates on mRNA. This aberrant accumulation of Mex67p with RNA and the cold-sensitive growth phenotype of a dbp5 allele are suppressed by a mex67 mutation. Moreover, Mex67 bound mRNA accumulates at the nuclear rim in a temperature-sensitive dbp5 mutant when the nuclear exosome is impaired. Importantly, although accumulation of Mex67p-containing mRNPs is also observed when a nuclear basket component is mutated, these mRNPs still contain the nuclear export factor Yra1p. In contrast, the dbp5-trapped mRNPs lack Yra1p. We propose that Dbp5p's function is specifically required to displace Mex67p from exported mRNPs, thus terminating export.  相似文献   

3.
4.
Human TAP is an orthologue of the yeast mRNA export factor Mex67p. In mammalian cells, TAP has a preferential intranuclear localization, but can also be detected at the nuclear pores and shuttles between the nucleus and the cytoplasm. TAP directly associates with mRNA in vivo, as it can be UV-crosslinked to poly(A)+ RNA in HeLa cells. Both the FG-repeat domain of nucleoporin CAN/Nup214 and a novel human 15 kDa protein (p15) with homology to NTF2 (a nuclear transport factor which associates with RanGDP), directly bind to TAP. When green fluorescent protein (GFP)-tagged TAP and p15 are expressed in yeast, they localize to the nuclear pores. Strikingly, co-expression of human TAP and p15 restores growth of the otherwise lethal mex67::HIS3/mtr2::HIS3 double knockout strain. Thus, the human TAP-p15 complex can functionally replace the Mex67p-Mtr2p complex in yeast and thus performs a conserved role in nuclear mRNA export.  相似文献   

5.
Nuclear export of mRNAs and pre-ribosomal subunits (pre40S and pre60S) is fundamental to all eukaryotes. While genetic approaches in budding yeast have identified bona fide export factors for mRNAs and pre60S subunits, little is known regarding nuclear export of pre40S subunits. The yeast heterodimeric transport receptor Mex67-Mtr2 (TAP-p15 in humans) binds mRNAs and pre60S subunits in the nucleus and facilitates their passage through the nuclear pore complex (NPC) into the cytoplasm by interacting with Phe-Gly (FG)-rich nucleoporins that line its transport channel. By exploiting a combination of genetic, cell-biological, and biochemical approaches, we uncovered an unanticipated role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. We show that recruitment of Mex67-Mtr2 to pre40S subunits requires loops emanating from its NTF2-like domains and that the C-terminal FG-rich nucleoporin interacting UBA-like domain within Mex67 contributes to the transport of pre40S subunits to the cytoplasm. Remarkably, the same loops also recruit Mex67-Mtr2 to pre60S subunits and to the Nup84 complex, the respective interactions crucial for nuclear export of pre60S subunits and mRNAs. Thus Mex67-Mtr2 is a unique transport receptor that employs a common interaction surface to participate in the nuclear export of both pre-ribosomal subunits and mRNAs. Mex67-Mtr2 could engage a regulatory crosstalk among the three major export pathways for optimal cellular growth and proliferation.  相似文献   

6.
7.
Many messenger RNA export proteins have been identified; yet the spatial and temporal activities of these proteins and how they determine directionality of messenger ribonucleoprotein (mRNP) complex export from the nucleus remain largely undefined. Here, the bacteriophage PP7 RNA-labeling system was used in Saccharomyces cerevisiae to follow single-particle mRNP export events with high spatial precision and temporal resolution. These data reveal that mRNP export, consisting of nuclear docking, transport, and cytoplasmic release from a nuclear pore complex (NPC), is fast (∼200 ms) and that upon arrival in the cytoplasm, mRNPs are frequently confined near the nuclear envelope. Mex67p functions as the principal mRNP export receptor in budding yeast. In a mex67-5 mutant, delayed cytoplasmic release from NPCs and retrograde transport of mRNPs was observed. This proves an essential role for Mex67p in cytoplasmic mRNP release and directionality of transport.  相似文献   

8.
9.
Rae1p and Mex67p/Tap are conserved mRNA export factors. We have used synthetic lethal genetic screens in Schizosaccharomyces pombe to identify mutations in genes that are functionally linked to rae1 and mex67 in mRNA export. From these screens, we have isolated mutations in a putative S. pombe homologue of the Candida albicans elf1 gene. The elf1 of S. pombe is not an essential gene. When elf1 mutations are combined with rae1-167 mutation, growth and mRNA export is inhibited in the double mutants. This inhibition can be suppressed by the multicopy expression of mex67 suggesting that Mex67p can substitute for the loss of Elf1p function. Elf1p is a non-membrane member of the ATP-binding cassette (ABC) class of ATPase and the GFP-Elf1p fusion localizes to the cytoplasm. Elf1p, expressed and purified from Escherichia coli, binds and hydrolyzes ATP. A mutant Elf1p that carries a glycine to aspartic acid (G731D) mutation within the Walker A domain of the second ATP site retains the ATP binding but loses its ATPase activity in vitro. This mutant protein no longer functions in mRNA export. Taken together, our results show that Elf1p functions as a mRNA export factor along with Rae1p and Mex67p in S. pombe.  相似文献   

10.
C A Hodge  H V Colot  P Stafford    C N Cole 《The EMBO journal》1999,18(20):5778-5788
In a screen for temperature-sensitive mutants of Saccharomyces cerevisiae defective for mRNA export, we previously identified the essential DEAD-box protein Dbp5p/Rat8p and the nucleoporin Rat7p/Nup159p. Both are essential for mRNA export. Here we report that Dbp5p and Rat7p interact through their Nterminal domains. Deletion of this portion of Rat7p (Rat7pDeltaN) results in strong defects in mRNA export and eliminates association of Dbp5p with nuclear pores. Overexpression of Dbp5p completely suppressed the growth and mRNA export defects of rat7DeltaN cells and resulted in weaker suppression in cells carrying rat7-1 or the rss1-37 allele of GLE1. Dbp5p interacts with Gle1p independently of the N-terminus of Dbp5p. Dbp5p shuttles between nucleus and cytoplasm in an Xpo1p-dependent manner. It accumulates in nuclei of xpo1-1 cells and in cells with mutations affecting Mex67p (mex67-5), Gsp1p (Ran) or Ran effectors. Overexpression of Dbp5p prevents nuclear accumulation of mRNA in xpo1-1 cells, but does not restore growth, suggesting that the RNA export defect of xpo1-1 cells may be indirect. In a screen for high-copy suppressors of the rat8-2 allele of DBP5, we identified YMR255w, now called GFD1. Gfd1p is not essential, interacts with Gle1p and Rip1p/Nup42p, and is found in the cytoplasm and at the nuclear rim.  相似文献   

11.
真核生物mRNA在细胞核内被转录,而到达细胞质内翻译成为蛋白质,因此跨越核孔的核输出过程是必须的。现在已确定异二聚体TAP/NXT(在酵母中为Mex67p/Mtr2p)在此过程中是最基本的元件,此外其他相关因子如Aly、UAP56等也参与了这个复杂的过程,包括结合、输出、解离和载体输入。本文简要介绍了mRNA输出的基本机制。  相似文献   

12.
The effects of heat shock protein 70 (Hsp70), a molecular chaperone, on the degradation and functional alterations of a mutant large T antigen induced by a nonpermissive temperature were examined. In this study, mouse tracheal epithelial TM02-3 cells harboring temperature-sensitive simian virus 40 large T antigen and stable TM02-3 cells overexpressing human Hsp70 and/or Hsp40 were used. Although the temperature shift from 33 degrees C (permissive temperature) to 39 degrees C (nonpermissive temperature) induced increases in the endogenous chaperones including Hsp70 and Hsp40, degradation of the T antigen, activation of the p53-p21(waf1) pathway, and an arrest of cell growth were observed in the mock cells. In contrast, these changes induced by the temperature shift were partially but significantly prevented in stable cells overexpressing human Hsp70 and/or Hsp40. A combination of Hsp70 and Hsp40 was the most effective, suggesting that Hsp40 may cooperate with Hsp70. Moreover, immunocytochemical observation indicated that human Hsp70 was expressed in the cytoplasm at 33 degrees C, but it colocalized with T antigen in the nucleus at 39 degrees C. These results suggest that overexpressed Hsp70 translocates from the cytoplasm to nucleus, and significantly restores the structural stability and functional defects of mutant large T antigen in the cells.  相似文献   

13.
Mex67, the homolog of human TAP, is not an essential mRNA export factor in Schizosaccharomyces pombe. Here we show that S. pombe encodes a homolog of the TAP cofactor that we have also named p15, whose function in mRNA export is not essential. We have identified and characterized two distinct nuclear export activities, nuclear export signal (NES) I and NES II, within the region of amino acids 434-509 of Mex67. These residues map within the known NTF2-like fold of TAP (amino acids 371-551). We show that the homologs of these two NESs are present and are functionally conserved in TAP. The NES I, NES II, and NES I + II of TAP and Mex67 directly bind with -phenylalanine-glycine (-FG)-containing sequences of S. pombe Nup159 and Nup98 but not with human p62. Mutants of NES I or NES II of Mex67/TAP that do not bind -FG Nup159 and Nup98 in vitro are unable to mediate nuclear export of a heterologous protein in S. pombe and in HeLa cells. Fused with the RNA recognition motifs (RRMs) of Crp79 and green fluorescent protein (GFP) (RRM-NES-GFP), the NES I and NES II of Mex67 or TAP can suppress the mRNA export defect of the Deltap15 rae1-167 synthetic lethal S. pombe strain, suggesting that the NESs can function in the absence of p15. These novel nuclear export sequences may provide additional routes for delivering Mex67/TAP to the nuclear pore complex.  相似文献   

14.
We have identified between Mex67p and Mtr2p a complex which is essential for mRNA export. This complex, either isolated from yeast or assembled in Escherichia coli, can bind in vitro to RNA through Mex67p. In vivo, Mex67p requires Mtr2p for association with the nuclear pores, which can be abolished by mutating either MEX67 or MTR2. In all cases, detachment of Mex67p from the pores into the cytoplasm correlates with a strong inhibition of mRNA export. At the nuclear pores, Nup85p represents one of the targets with which the Mex67p-Mtr2p complex interacts. Thus, Mex67p and Mtr2p constitute a novel mRNA export complex which can bind to RNA via Mex67p and which interacts with nuclear pores via Mtr2p.  相似文献   

15.
In eukaryotes, mRNAs are transcribed in the nucleus and exported to the cytoplasm for translation to occur. Messenger RNAs complexed with proteins referred to as ribonucleoparticles are recognized for nuclear export in part by association with Mex67, a key Saccharomyces cerevisiae mRNA export factor and homolog of human TAP/NXF1. Mex67, along with its cofactor Mtr2, is thought to promote ribonucleoparticle translocation by interacting directly with components of the nuclear pore complex (NPC). Herein, we show that the nuclear pore-associated protein Sac3 functions in mRNA export. Using a mutant allele of MTR2 as a starting point, we have identified a mutation in SAC3 in a screen for synthetic lethal interactors. Loss of function of SAC3 causes a strong nuclear accumulation of mRNA and synthetic lethality with a number of mRNA export mutants. Furthermore, Sac3 can be coimmunoprecipitated with Mex67, Mtr2, and other factors involved in mRNA export. Immunoelectron microscopy analysis shows that Sac3 localizes exclusively to cytoplasmic fibrils of the NPC. Finally, Mex67 accumulates at the nuclear rim when SAC3 is mutated, suggesting that Sac3 functions in Mex67 translocation through the NPC.  相似文献   

16.
Nuclear pore complexes (NPCs) play an essential role in RNA export. Nucleoporins required for mRNA export in Saccharomyces cerevisiae are found in the Nup84p and Nup82p subcomplexes of the NPC. The Nup82p subcomplex contains Nup82p, Rat7p/Nup159p, Nsp1p, Gle1p/Rss1p, and Rip1p/Nup42p and is found only on the cytoplasmic face of NPCs. Both Rat7p and Gle1p contain binding sites for Rat8p/Dbp5p, an essential DEAD box protein and putative RNA helicase. Rip1p interacts directly with Gle1p and is the only protein known to be essential for mRNA export after heat shock but not under normal growth conditions. We report that in cells lacking Rip1p, both Gle1p and Rat8p dissociate from NPCs following heat shock at 42 degrees C. Rat8p but not Gle1p was retained at NPCs if rip1Delta cells were first shifted to 37 degrees C and then to 42 degrees C, and this was correlated with preserving mRNA export in heat-shocked rip1Delta cells. Export following ethanol shock was less dependent on the presence of Rip1p. Exposure to 10% ethanol led to dissociation of Rat8p from NPCs in both wild-type and rip1Delta cells. Following this treatment, Rat8p was primarily nuclear in wild-type cells but primarily cytoplasmic in rip1Delta cells. We also determined that efficient export of heat shock mRNA after heat shock depends upon a novel 6-amino-acid element within Rat8p. This motif is not required under normal growth conditions or following ethanol shock. These studies suggest that the molecular mechanism responsible for the defect in export of heat shock mRNAs in heat-shocked rip1Delta cells is dissociation of Rat8p from NPCs. These studies also suggest that both nuclear pores and Rat8p have features not required for mRNA export in growing cells but which enhance the ability of mRNAs to be exported following heat shock.  相似文献   

17.
Human TAP and Saccharomyces cerevisiae Mex67p belong to a family of proteins that mediate mRNA export. Computer searches identified previously two Caenorhabditis elegans genes, C15H11.3 and C115H11.6, that encode putative homologs of hTAP and Mex67p (Segref et al., EMBO J, 1997, 16:3256-3271). Using RNA interference experiments in C. elegans, we found that functional knockout of C15H11.3 resulted in nuclear accumulation of poly(A)-containing RNAs and was lethal for both embryos and adult nematodes. No embryonic or progeny abnormality was observed in functional knockout of C15H11.6. Taken together, these data established that the C15H11.3 gene product is an ortholog of hTAP and Mex67p; thus, it was named Ce-NXF-1. Ce-NXF-1 binds RNA directly and is a nucleocytoplasmic shuttle protein accumulating in the nucleoplasm and at the nuclear rim. The rim association is mediated via unique signals present in the C-terminal portion of all TAP/NXF and Mex67p proteins. This region was shown to interact with the FG-repeat domains of nucleoporins Nup98, Nup153, and Nup214, indicating that the rim association occurs through components of the nuclear pore complex. In summary, Ce-NXF-1 belongs together with hTAP and Mex67p to a family of proteins that participate in mRNA export and can provide a direct molecular link between mRNAs and components of the nuclear pore complex. Therefore, despite differences in mRNA metabolism between these species, they utilize a conserved mRNA transport mechanism.  相似文献   

18.
19.
mRNA export is mediated by Mex67p:Mtr2p/NXF1:p15, a conserved heterodimeric export receptor that is thought to bind mRNAs through the RNA binding adaptor protein Yra1p/REF. Recently, mammalian SR (serine/arginine-rich) proteins were shown to act as alternative adaptors for NXF1-dependent mRNA export. Npl3p is an SR-like protein required for mRNA export in S. cerevisiae. Like mammalian SR proteins, Npl3p is serine-phosphorylated by a cytoplasmic kinase. Here we report that this phosphorylation of Npl3p is required for efficient mRNA export. We further show that the mRNA-associated fraction of Npl3p is unphosphorylated, implying a subsequent nuclear dephosphorylation event. We present evidence that the essential, nuclear phosphatase Glc7p promotes dephosphorylation of Npl3p in vivo and that nuclear dephosphorylation of Npl3p is required for mRNA export. Specifically, recruitment of Mex67p to mRNA is Glc7p dependent. We propose a model whereby a cycle of cytoplasmic phosphorylation and nuclear dephosphorylation of shuttling SR adaptor proteins regulates Mex67p:Mtr2p/NXF1:p15-dependent mRNA export.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号