首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inoda T 《Zoological science》2012,29(9):547-552
Larvae of diving beetles such as the various Dytiscus species (Coleoptera: Dytiscidae) are carnivorous and usually prey on other aquatic animals. Cannibalism among larvae of Dytiscus sharpi sharpi (Wehncke) was observed to begin when they were starved for more than two days under artificial breeding conditions. However, the 2-day starved larvae did not show cannibalism in the presence of intact, motionless, frozen tadpoles, or frozen shrimps. The beetle larvae attacked and captured intact tadpoles faster (15 sec) than other motionless and frozen tadpoles (120 sec), indicating that prey movement was an important factor in stimulating feeding behavior in larvae. Prey density does not have an effect on larval cannibalism. In cases in which preys are present at lower densities than that of larvae, a group of beetle larvae frequently fed on single prey. This feeding behavior, therefore, provides direct evidence of self-other recognition at the species level. Using two traps in one aquarium that allows the larvae to detect only prey smell, one containing tadpoles and another empty, the beetle larvae were attracted to the trap with tadpoles at high frequency, but not to the empty trap. In another experiment, the beetle larvae were not attracted to the trap containing a beetle larva. These results suggest that the larvae of D. sharpi sharpi are capable of recognizing prey scent, which enables the promotion of foraging behavior and the prevention of cannibalism.  相似文献   

2.
The effects of temperature on the mating behavior, gonad development, germ cell maturation, and egg spawning of the predaceous diving beetle Dytiscus sharpi (Coleoptera; Dytiscidae), were investigated. By field observations, we found that mating behavior started in October and occurred more frequently from November to December. Under our laboratory breeding conditions, we observed almost the same seasonal variation in mating behavior. We found that temperatures lower than 20 degrees C were required to trigger mating behavior. We also found the same temperature threshold triggered gonadogenesis as well as spermatogenesis. Furthermore, for females, exposure to lower temperatures (<8 degrees C) during the winter was required for egg maturation and spawning in spring; that is, there was a second threshold for successful female reproduction. We conclude that the termination of summer reproductive diapause of D. sharpi is regulated in a temperature-dependent manner, thus effecting the adaptation of D. sharpi to southern warm habitats.  相似文献   

3.
Nonlethal DNA sampling is highly desirable in molecular genetic studies of protected and endangered species. To develop a demonstrably nonlethal method of obtaining DNA from endangered diving beetles (Dytiscus sharpi sharpi Wehncke, Cybister lewisianus Sharp and Cybister brevis Aubé), we amputated the antennae of these endangered diving beetles and investigated the impact of the amputation on reproductive behaviors, egg‐laying and lifespan. Diving beetles with either one or no antennae copulated without delay and laid eggs, comparable to the pairs of intact beetles under breeding conditions. The lifespan of antennae‐amputated D. sharpi sharpi was the same as that of the intact beetles. A single antenna was sufficient to allow polymerase chain reaction (PCR) detection of a mitochondrial DNA gene, cytochrome‐c oxidase subunit I (COI), and the sequence of the COI gene could be determined directly. The PCR‐ready genomic DNA was available both in fresh antennae isolated from living beetles and in old antennae from whole beetles preserved for at least 5–6 years in pure ethanol. These results suggest that an antenna is a good sampling site for isolating genomic DNA from endangered diving beetles without sacrificing and disturbing reproductive behaviors such as mating and egg‐laying, or lifespan.  相似文献   

4.
For the conservation of the diving beetle, Dytiscus sharpi (Wehncke) (Coleoptera: Dytiscidae), which is included in the Red List of Japan, it is critical to understand its ecological background. In the present study, oviposition preference and hatchability were investigated under laboratory conditions. Possible candidates of oviposition plants were observed in the natural breeding habitats of D. sharpi. Eight aquatic plants were identified, and Oenanthe javanica (Blume) was the major species present in March, when first instar larvae appeared. The number of eggs laid was investigated under the following conditions: (i) eight field plants were authentically recreated at a similar covering rate to that in the natural habitat; (ii) each of the eight plants was set at the same covering rate; (iii) a single plant taken from the field was placed separately. Significant oviposition preference for O. javanica was found when these eight aquatic plants were present in the same aquaria. In addition, hatchability in O. javanica was significantly higher than that in any of the other plants. These results suggest that O. javanica is an important aquatic plant for oviposition by D. sharpi.  相似文献   

5.
The first account of the predaceous diving beetles or Dytiscidae of Jordan is presented. Altogether 25 species are listed, although the occurrence of two of them remains doubtful. Nine species are recorded from the territory of Jordan for the first time, and the first precise locality data are provided for an additional seven species. Bidessus anatolicus Wewalka, 1972 and Nebrioporus stearinus (Kolenati, 1845) recorded recently from Jordan based on misidentification are removed from the list. If available, habitat information is provided for recently collected species. The zoogeographical patterns of the region are briefly summarised.  相似文献   

6.
Phylogeny and diversification of diving beetles (Coleoptera: Dytiscidae)   总被引:1,自引:0,他引:1  
Dytiscidae is the most diverse family of beetles in which both adults and larvae are aquatic, with examples of extreme morphological and ecological adaptations. Despite continuous attention from systematists and ecologists, existing phylogenetic hypotheses remain unsatisfactory because of limited taxon sampling or low node support. Here we provide a phylogenetic tree inferred from four gene fragments (cox1, rrnL, H3 and SSU, ≈ 4000 aligned base pairs), including 222 species in 116 of 174 known genera and 25 of 26 tribes. We aligned ribosomal genes prior to tree building with parsimony and Bayesian methods using three approaches: progressive pair‐wise alignment with refinement, progressive alignment modeling the evolution of indels, and deletion of hypervariable sites. Results were generally congruent across alignment and tree inference methods. Basal relationships were not well defined, although we identified 28 well supported lineages corresponding to recognized tribes or groups of genera, among which the most prominent novel results were the polyphyly of Dytiscinae; the grouping of Pachydrini with Bidessini, Peschetius with Methlini and Coptotomus within Copelatinae; the monophyly of all Australian Hydroporini (Necterosoma group), and their relationship with the Graptodytes and Deronectes groups plus Hygrotini. We found support for a clade formed by Hydroporinae plus Laccophilini, and their sister relationship with Cybistrini and Copelatinae. The tree provided a framework for the analysis of species diversification in Dytiscidae. We found a positive correlation between the number of species in a lineage and the age of the crown group as estimated through a molecular clock approach, but the correlation with the stem age was non‐significant. Imbalances between sister clades were significant for several nodes, but the residuals of the regression of species numbers with the crown age of the group identified only Bidessini and the Coptotomus + Agaporomorphus clade as lineages with, respectively, above and below expected levels of species diversity. © The Willi Hennig Society 2008.  相似文献   

7.
Inoda T 《Zoological science》2003,20(3):377-382
Mating season and embryonic development of the predaceous diving beetles, Dytiscus sharpi, (Coleoptera; Dytiscidae) were observed under artificial breeding conditions. Female and male adult insects started mating from November to March and gave first instar larvae mainly in April. When the mating was artificially delayed until February, first instar larvae appeared from the end of March to the middle of May. I also investigated the effects of temperature on larval development. Apparent hatchability of eggs was not affected by high temperature, however, their normal development after hatching was significantly interfered. Most of the first instar larvae kept at 20-25 degrees C from before hatching died within one day after hatching. By contrast, juveniles kept outdoors (7.0-20.9 degrees C) could develop at least until second instar larvae. Temperature >23 degrees C after hatching had no effects on larval development. From these observations, it was concluded that the reproduction strategy of Dytiscus sharpi, i.e. mating in late autumn and hatching in early spring would be the reasonable results of adaptation to the warm habitats where they are collected.  相似文献   

8.
A new subfamily of predaceous diving beetles, Liadytiscinae subfam. nov., including two genera and four species, Liadytiscus gen. nov. (L. cretaceus sp. nov., L. longitibialis sp. nov., and L. latus sp. nov.) and Liadroporus gen. nov. (L. elegans sp. nov.), from the Late Tithonian-Berriasian (Huangbanjigou, Yixian Formation) of China is described. Two new genera, Mesoderus gen. nov. with two species, M. magnus sp. nov. and M. ventralis sp. nov., and Sinoporus gen. nov. with one species, S. lineatus sp. nov., are also described; their position in the system of Dytiscidae remains uncertain. Relationships of the taxa described with Recent and fossil taxa of the same rank and some presumable ecological features of the new taxa are discussed.  相似文献   

9.
10.
A box trap was developed for effective collection of large predaceous diving beetles. The floating trap, which was fabricated from a plastic box with two funnel mouths equipped with mesh lids, can be opened only when beetles enter the trap. Considerable attention was paid to the trap's performance as it was quantitatively evaluated in laboratory conditions in detail using Cybister and Dytiscus diving beetles. Without the mesh lid on the trap mouth (negative control test), the number of beetles in the trap was the highest at 2–3 hours. However, most beetles escaped from the trap without a mesh lid within six hours of starting the experiment. When eight beetles were put into a trap without a mesh lid, all of them had escaped from it after eight hours. On the contrary, beetles did not escape from a trap with a mesh lid. This result and testing in the field suggest that trap lids have a significant role in averting the escape of beetles from the trap.  相似文献   

11.
Many species of Dytiscus diving beetles exhibit intrasexual dimorphism, e.g., the elytra is smooth in some females and grooved in others. However, the expression of the grooves and whether they are a product of heredity or the environment remain unknown. One Japanese species, Dytiscus sharpi sharpi Wehncke, 1875 , also shows female dimorphism, with grooved and smooth morphs, while D. sharpi validus Régimbart, 1899, only has a single morph (the grooved type). A hybrid of the two species should therefore provide a means of sorting out how the grooves are inherited. We found two independent wetlands of D. sharpi sharpi in Chiba Prefecture, Japan. One was a place where a high proportion of grooved females lived, and the others had high proportions of smooth females. After five to eight generations of beetles from two populations with different proportions of grooved females were reared under aquarium conditions constituting a common garden design, i.e., water temperature, water depth, and presence of a plant for oviposition, the differences remained. We mated smooth virgin females of D. sharpi sharpi with males of D. sharpi validus to obtain hybrid offspring. The elytral traits of the hybrid females produced only grooved forms. These results suggested that the female dimorphism is determined by genetics, and that the grooved morph was dominant over the smooth one, independent of environmental factors. In addition, the hybrid insects did not differ from the two subspecies insects in larval survivorship, pupation success, or sex ratio. They also showed neither morphological abnormality nor reduced survival.  相似文献   

12.
A model of evolution based on conflicts of interest between the sexes over mating decisions is examined in relation to diving beetles (Dytiscidae). The model predicts the following evolutionary sequence: (1) cost to females of mating increases, (2) females evolve behavioural resistance to male mating attempts, (3) males evolve devices to overcome female resistance, and (4) females evolve morphological counter-adaptations to the male devices. This model is tested using species of Dytiscidae, in which (1) some species have a very long mating duration while others mate quickly, (2) females of some species resist male mating attempts by swift and erratic swimming when seized by a male, (3) males of some species possess a grasping device in the form of sucker-shaped setae on the legs used to adhere to the pronota or elytra of females prior to mating, and (4) females of some species have a modified dorsal cuticle with irregular sculpturing which appears to interfere with the male adhesive setae. The predicted order of evolution of some of these features was tested in a cladistic analysis of 52 taxa in Dytiscidae and Hygrobiidae using characters from adult and larval morphology and a portion of the gene wingless . The combined analysis resulted in nine most parsimonious cladograms. The consensus cladogram of these indicates that male sucker setae arose a single time in a clade of Dytiscinae. Nested within this clade are five groups with an independently derived, modified dorsal cuticle in females. This pattern of characters in Dytiscinae is consistent with the prediction implied by the model of sexual selection. The utility of wingless as a marker for phylogenetic analysis of diving beetles is discussed, and the resulting phylogeny is compared with previous analyses and current classification.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 359–388.  相似文献   

13.
The Mediterranean basin is an area of high diversity and endemicity, but the age and origin of its fauna are still largely unknown. Here we use species-level phylogenies based on approximately 1300 base pairs of the genes 16S rRNA and cytochrome oxidase I to establish the relationships of 27 of the 34 endemic Iberian species of diving beetles in the family Dytiscidae, and to investigate their level of divergence. Using a molecular clock approach, 18-19 of these species were estimated to be of Pleistocene origin, with four to six of them from the Late Pleistocene ( approximately 100 000 years). A second, lower speciation frequency peak was assigned to Late Miocene or Early Pliocene. Analysis of the distributional ranges showed that endemic species placed in the tip nodes of the trees are significantly more likely to be allopatric with their sisters than endemic species at lower node levels. Allopatric sister species are also significantly younger than sympatric clades, in agreement with an allopatric mode of speciation and limited subsequent range movement. These results strongly suggest that for some taxa Iberian populations were isolated during the Pleistocene long enough to speciate, and apparently did not expand their ranges to recolonize areas north of the Pyrenees. This is in contradiction to observations from fossil beetles in areas further north, which document large range movements associated with the Pleistocene glacial cycles hypothesized to suppress population isolation and allopatric speciation.  相似文献   

14.
The predacious behaviour of Dytiscus circumcinctus and D. latissimus larvae was studied experimentally. When offered different prey simultaneously, D. latissimus larvae preferred cased caddis larvae relative to mayfly nymphs and isopods, whereas in D. circumcinctus the preference order was reversed. Notonectid nymphs and tadpoles were consumed in higher numbers by D. circumcinctus than by D. latissimus larvae. D. circumcinctus larvae and instar III larvae of D. latissimus most frequently captured caddis larvae through the case wall, whereas the instar I and II larvae of D. latissimus normally attacked the thorax of the exposed larva from above the front opening of the case. Limnephilus borealis, L. nigriceps and L. rhombicus caddis larvae differed in case structure, and they were all successfully captured by D. latissimus and D. circumcinctus instar II and III larvae. Neither capture success nor ingestion efficiency varied significantly between the two Dytiscus species or between different prey species. Instar II and III D. circumcinctus larvae had shorter reaction times than those of D. latissimus. The larger L. borealis and L. rhombicus larvae were preferred by the two last Dytiscus larval instars, and the handling time of these two prey was longer than that of L. nigriceps larvae.  相似文献   

15.
《水生昆虫》2012,34(2):57-76
Some small diving beetles can survive submerged through weeks and months, because they can extract oxygen, dissolved in the water, through respiratory pores in their integument. An air flux from the outside to the inside through the respiratory pores has been demonstrated. All diving beetles capable of such pore respiration are small, but not all small diving beetles have pore respiration. With increasing size, more and more of the surface must be covered by respiratory pores to meet the increasing demand of oxygen. In running water species the pore-respiration mode is regarded as an adaptation to life in current exposed substrates, thus they avoid the risk of being swept away during frequent surface visits. In stagnant water species the pore respiration mode reduces the risk of falling victim to pelagic predators. The submersion tolerant species can switch to surface respiration, e.g. during low oxygen content. The pore respiratory mechanism is believed to be a specialised plastron. The oxygen flux through the scattered, small respiratory pore area may be enhanced by a functional thinning of the boundary layer.  相似文献   

16.
Phylogenetic relationships among members of the diving beetle tribe Cybistrini (Coleoptera: Dytiscidae) were inferred from analysis of 47 adult and larval morphological characters and sequences from portions of the genes cytochrome oxidase I (COI) and II (COII), histone III (H3) and wingless. Thirty‐three species of Cybistrini were included, representing all genus‐groups except Regimbartina Chatanay and Megadytes (Bifurcitus) Brinck, and most historically recognized species groups and subgenera used in the tribe. Outgroups include six species from other tribes within Dytiscinae and Lancetinae. Analyses included parsimony analysis of the combined data, likelihood analysis of combined molecular data and partitioned Bayesian analysis of the combined data. Results indicate that Cybistrini is well supported as a monophyletic group. Within the tribe, all currently recognized genus groups were found to be monophyletic with the exception of Onychohydrus Schaum, which is paraphyletic with respect to Austrodytes Watts in the parsimony analysis, but monophyletic in the likelihood and Bayesian analyses, and Cybister sensu stricto, which is paraphyletic with respect to C. (Melanectes) Brinck and C. (Scaphinectes) Ádám in the parsimony analysis or only the latter in the likelihood and Bayesian analyses. Results also suggest that some, but not all, historically recognized species groups or subgenera in the large genus Cybister Curtis are monophyletic, and this is discussed and compared. To improve the classification, the name Sternhydrus Brinck is elevated from subgenus to genus rank ( new status ). Four subgenera in the genus Cybister are recognized: C. (Melanectes) Brinck, C. (Megadytoides) Brinck ( resurrected ), C. (Neocybister) Miller, Bergsten and Whiting ( new subgenus ) and C. (Cybister) Curtis. The following new synonyms are established: Trochalus Dejean ( new synonym ), and ScaphinectesÁdám = Cybister (Cybister) ( new synonym ). The Neotropical species Cybister parvus Trémouilles (not examined) apparently does not fit any historical or currently recognized genus‐group diagnosis in Cybistrini, so it is retained in Cybister but incertae sedis with respect to subgenus. In addition to classification, the evolution of the unique character combinations present in cybistrines are discussed. A key to the adults of genera and subgenera is presented.  相似文献   

17.
A comprehensive higher‐level phylogeny of diving beetles (Dytiscidae) based on larval characters is presented. Larval morphology and chaetotaxy of a broad range of genera and species was studied, covering all currently recognized subfamilies and tribes except for the small and geographically restricted Hydrodytinae, where the larva is unknown. The results suggest several significant conclusions with respect to the systematics of Dytiscidae including the following: monophyly of all currently recognized subfamilies, although Dytiscinae when considered in a broad context is rendered paraphyletic by Cybistrinae; currently recognized tribes are monophyletic except for Agabini, Hydroporini and Laccornellini; inter‐subfamily and inter‐tribe relationships generally show weak support, except for a few well supported clades; three distinct clades are recognized within Dytiscinae [Dytiscini sensu lato (i.e. including the genera Dytiscus Linnaeus and Hyderodes Hope), Hydaticini sensu lato, and Cybistrini]; and recognition of Pachydrini as a distinct tribe. Other less robust results include: Methlini sister to the rest of Hydroporinae; relative basal position of Laccornini, Hydrovatini and Laccornellini within Hydroporinae; close relationship of Agabinae and Copelatinae; Matinae nested deep within Dytiscidae, as sister to a large clade including Colymbetinae, Coptotominae, Lancetinae and Dytiscinae sensu lato; the sister‐group relationship of Agabetini and Laccophilini is confirmed. The results presented here are discussed and compared with previous phylogenetic hypotheses based on different datasets, and the evolution of some significant morphological features is discussed in light of the proposed phylogeny. All suprageneric taxa are diagnosed, including illustrations of all relevant synapomorphies, and a key to separate subfamilies and tribes is presented, both in traditional (paper) format and as an online Lucid interactive identification key.  相似文献   

18.
Male diving beetles of the subfamily Dytiscinae possess tarsi with adhesive discs that they strike on the female dorsum during mating interactions. Females of many species are dimorphic, being either smooth or structured dorsally. Darwin suggested the female structures were an aid for the male but in this study we investigate these characteristics in the light of sexual conflicts. The intraspecific variation in the numbers and size distribution of male tarsal discs, and in body measurements were recorded for three dytiscine species, all with dimorphic females. The number of protarsal discs in the two Dytiscus species varied much more than previously reported. In addition, only a small part of the variation could be explained by body size. In Graphoderus we found highly significant differences in male secondary sexual characters among populations. A multivariate analysis significantly correlated male secondary sexual characters with the proportion of granulate females in the populations. These observations are consistent with the theory of arms races and female counter adaptations. Covariation between male and female characters is predicted from a framework of sexual conflict over mating rate. At the same time our study gives a new perspective on the function of dytiscine female dorsal irregularities debated ever since Darwin.  相似文献   

19.
Three species of the Japanese diving beetle Dytiscus have been identified: D. dauricus Gebler, 1832; D. marginalis czerskii Zeitzev, 1953; and D. sharpi. At present, the latter consists of the subspecies D. sharpi sharpi Wehncke, 1875 and D. sharpi validus Régimbart, 1899 based on the comparative data of mitochondrial DNA cytochrome‐c oxidase I (COI) sequences. Many Dytiscus species have smooth and grooved elytra, which are female dimorphic traits. For many years it has been thought that Japanese D. marginalis czerskii has a single morph, that is, only grooved females, although there were some collecting reports of smooth females occurring at the foot of Mt. Chokaisan in Yamagata and Akita Prefectures. However, the population of smooth females (smooth population) has not yet been identified by DNA markers. To understand the species status of the smooth population, we sequenced 769 bp of COI of a male derived from a smooth mother insect and compared it with the sequence from a known grooved female. The sequences of 769 bp of the COI gene in the smooth population were identical to that in the grooved female, indicating that Japanese D. marginalis czerskii has female dimorphic traits.  相似文献   

20.
Calcrete aquifers in arid inland Australia have recently been found to contain the world's most diverse assemblage of subterranean diving beetles (Coleoptera: Dytiscidae). In this study we test whether the adaptive shift hypothesis (ASH) or the climatic relict hypothesis (CRH) is the most likely mode of evolution for the Australian subterranean diving beetles by using a phylogeny based on two sequenced fragments of mitochondrial genes (CO1 and 16S-tRNA-ND1) and linearized using a relaxed molecular clock method. Most individual calcrete aquifers contain an assemblage of diving beetle species of distantly related lineages and/or a single pair of sister species that significantly differ in size and morphology. Evolutionary transitions from surface to subterranean life took place in a relatively small time frame between nine and four million years ago. Most of the variation in divergence times of the sympatric sister species is explained by the variation in latitude of the localities, which correlates with the onset of aridity from the north to the south and with an aridity maximum in the Early Pliocene (five mya). We conclude that individual calcrete aquifers were colonized by several distantly related diving beetle lineages. Several lines of evidence from molecular clock analyses support the CRH, indicating that all evolutionary transitions took place during the Late Miocene and Early Pliocene as a result of aridification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号