首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In a prior study, we identified seven clinical isolates of an Aspergillus sp. that were slow to sporulate in multiple media and demonstrated decreased in vitro susceptibilities to multiple antifungals, including amphotericin B, itraconazole, voriconazole, and caspofungin. These isolates were initially considered to be variants of Aspergillus fumigatus because of differences in mitochondrial cytochrome b sequences and unique randomly amplified polymorphic DNA PCR patterns (S. A. Balajee, M. Weaver, A. Imhof, J. Gribskov, and K. A. Marr, Antimicrob. Agents Chemother. 48: 1197-1203, 2004). The present study was performed to clarify the taxonomic status of these organisms by phylogenetic analyses based on multilocus sequence typing of five genes (the beta-tubulin gene, the rodlet A gene, the salt-responsive gene, the mitochondrial cytochrome b gene, and the internal transcribed spacer regions). Results revealed that four of the seven variant isolates clustered together in a clade very distant from A. fumigatus and distinct from other members of the A. fumigatus group. This new clade, consisting of four members, was monophyletic with strong bootstrap support when the protein-encoding regions were analyzed, indicating a new species status under the phylogenetic species concept. Phenotype studies revealed that the variant isolate has smaller conidial heads with diminutive vesicles compared to A. fumigatus and is not able to survive at 48 degrees C. Our findings suggest the presence of a previously unrecognized, potentially drug-resistant Aspergillus species that we designate A. lentulus.  相似文献   

4.
Two new species of the methanol assimilating ascosporic yeast genus Komagataella are described. Komagataella populi sp. nov. (NRRL YB-455, CBS 12362, type strain, MycoBank accession number = 564110) was isolated from an exudate on a cottonwood tree (Populus deltoides), Peoria, Illinois, USA, and Komagataella ulmi sp. nov. (NRRL YB-407, CBS 12361, type strain, MycoBank accession number = 564111) was isolated from the exudate on an elm tree (Ulmus americana), also growing in Peoria, Illinois. The species were resolved from divergence in gene sequences for domains D1/D2 LSU rRNA, ITS1-5.8S-ITS2, mitochondrial small subunit rRNA, RNA polymerase subunit 1 and translation elongation factor-1α. Species of Komagataella assimilate few carbon compounds and are unlikely to be resolved from differences in standard growth and fermentation tests. For this reason, separation of species is dependent on gene sequence analysis.  相似文献   

5.
6.
Pyruvate decarboxylases (PDCs) are a class of enzymes which carry out the non-oxidative decarboxylation of pyruvate to acetaldehyde. These enzymes are also capable of carboligation reactions and can generate chiral intermediates of substantial pharmaceutical interest. Typically, the decarboxylation and carboligation processes are carried out using whole cell systems. However, fermentative organisms such as Saccharomyces cerevisiae are known to contain several PDC isozymes; the precise suitability and role of each of these isozymes in these processes is not well understood. S. cerevisiae has three catalytic isozymes of pyruvate decarboxylase (ScPDCs). Of these, ScPDC1 has been investigated in detail by various groups with the other two catalytic isozymes, ScPDC5 and ScPDC6 being less well characterized. Pyruvate decarboxylase activity can also be detected in the cell lysates of Komagataella pastoris, a Crabtree-negative yeast, and consequently it is of interest to investigate whether this enzyme has different kinetic properties. This is also the first report of the expression and functional characterization of pyruvate decarboxylase from K. pastoris (PpPDC). This investigation helps in understanding the roles of the three isozymes at different phases of S. cerevisiae fermentation as well as their relevance for ethanol and carboligation reactions. The kinetic and physical properties of the four isozymes were determined using similar conditions of expression and characterization. ScPDC5 has comparable decarboxylation efficiency to that of ScPDC1; however, the former has the highest rate of reaction, and thus can be used for industrial production of ethanol. ScPDC6 has the least decarboxylation efficiency of all three isozymes of S. cerevisiae. PpPDC in comparison to all isozymes of S. cerevisiae is less efficient at decarboxylation. All the enzymes exhibit allostery, indicating that they are substrate activated.  相似文献   

7.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

8.
Five strains of thermotolerant methylotrophic yeasts isolated in Thailand were found to represent three new species in the genera Pichia and Candida, based on phylogenetic analysis of D1/D2 domain of 26S rDNA, in addition to the morphological, physiological, biochemical and chemotaxonomic characterization. Three strains, FS96 and FS101 from flowers and M02 from tree flux, were characterized by ubiquinone Q7, multilateral budding, and the formation of hat-shaped ascospores that are liberated at maturation. These strains showed identical nucleotide sequences in the D1/D2 domain and formed a cluster with Candida thermophila, "Pichia salicis" and Pichia angusta. They differed by 1.9% of nucleotide substitutions from Candida thermophila, the nearest species. They were considered to represent a single new species and are described as Pichia siamensis sp. nov. Two strains, N051 and S023, isolated from soil did not produce ascospores, proliferated by multilateral budding, did not demonstrate urease or DBB color reaction, and lacked sexual stages. These characteristics correspond to the genus Candida. Strains N051 and S023 differed by 2.8% and 1.9% of nucleotide substitutions in the D1/D2 domain from the nearest species, Candida nemodendra and Candida ovalis, respectively, and are considered to represent respective new species. N051 and S023 are described as Candida krabiensis sp. nov. and Candida sithepensis sp. nov., respectively.  相似文献   

9.
Alternaria jesenskae sp. nov. recovered from seeds of a shrubby perennial plant Fumana procumbens (Cistaceae) in Slovakia is described and illustrated. The new taxon can be clearly separated from the other related large-spored and filament-beaked Alternaria species based on sequences of the ITS1, 5.8S and ITS2 region as well as by its distinctive morphology. Even though the molecular data have shown close relatedness with A. multirostrata, the new species is morphologically most similar to A. tomatophila distinguished primarily by the pronounced colony pigmentation, conidial septation and beak branching.  相似文献   

10.
A new yeast species, Vanderwaltozyma verrucispora , is proposed in this study based on two strains isolated from partially decayed leaves in Japan and one strain from soil in Taiwan. The species is characterized by the fermentation of glucose and galactose, formation of one to four spheroidal to ellipsoidal ascospores with warty surfaces in each ascus, and assimilation of a few carbon and nitrogen compounds. Genus assignment and distinction of the species from the other two recognized species of Vanderwaltozyma is based on the morphological and physiological characteristics, and phylogenetic analysis of nucleotide sequences of the D1/D2 domains of the large subunit (LSU) rRNA gene. From these comparisons, the name V. verrucispora sp. nov. is proposed. Sequence analysis of the D1/D2 domains of the LSU rRNA gene reveals that the phylogenetically closest relative of V. verrucispora is Vanderwaltozyma yarrowii . The type strain of the new species, which was isolated from a partially decayed leaf in Kagoshima Prefecture, Japan, is NBRC 1884T (=CBS 10887T=BCRC 23141T).  相似文献   

11.
A previous phylogenetic study on type strains of the genus Micromonospora and Micromonospora species bearing non-validly published names has pointed towards the species status of several of latter strains. Subsequent studies on morphological, cultural, chemotaxonomic, metabolic, and genomic properties, and on whole cell mass spectrometric analyses by matrix adsorbed laser desorption/ionization time-of-flight (MALDI-TOF) confirmed the species status, leading to the proposal of eight new Micromonospora species: Micromonospora citrea sp. nov., type strain DSM 43903T, Micromonospora echinaurantiaca sp. nov., type strain DSM 43904T, Micromonospora echinofusca sp. nov., type strain DSM 43913T, Micromonospora fulviviridis sp. nov., type strain DSM 43906T, Micromonospora inyonensis sp. nov., type strain DSM 46123T, Micromonospora peucetia sp. nov., type strain DSM 43363T, Micromonospora sagamiensis sp. nov., type strain DSM 43912T and Micromonospora viridifaciens sp. nov., type strain DSM 43909T.  相似文献   

12.
A yeast strain isolated from insect frass collected in Thailand was found to represent a new species of the genus Pichia. It is described as Pichia nongkratonensis sp. nov. In the phylogenetic tree based on the D1/D2 domain sequences of 26S rDNA, this yeast constitutes a cluster with Pichia dryadoides with high bootstrap confidence level; however, it differs from the latter species by 5.6% base substitutions. Pichia nongkaratonensis resembles P. dryadoides also in the phenotypic characteristics but is distinguished from this species by the assimilation of several carbon and nitrogen compounds.  相似文献   

13.
Periconia variicolor was isolated from water of an evaporation pond used for salt production on the southwestern coast of Puerto Rico. On the basis of cultural and morphological characteristics and ITS sequence it is describe as a new species of Periconia.  相似文献   

14.
Nineteen bacteria isolates recovered from shellfish samples (mussels and oysters) showed a new and specific 16S rDNA-RFLP pattern with an Arcobacter identification method designed to recognize all species described up to 2008. These results suggested that they could belong to a new species. ERIC-PCR revealed that the 19 isolates belonged to 3 different strains. The sequence of the 16S rRNA gene of a representative strain (F98-3T) showed 97.6% similarity with the closest species Arcobacter marinus followed by Arcobacter halophilus (95.6%) and Arcobacter mytili (94.7%). The phylogenetic analysis with the16S rRNA, rpoB, gyrB and hsp60 genes placed the shellfish strains within the same cluster as the three species mentioned (also isolated from saline habitats) but they formed an independent phylogenetic line. The DDH results between strain F98-3T and A. marinus (54.8% ± 1.05), confirmed that it represents a new species. Several biochemical tests differentiated the shellfish isolates from all other Arcobacter species. Although the new species was different from A. mytili, they shared not only the same habitat (mussels) but also the characteristic of being so far the only Arcobacter species that are simultaneously negative for urea and indoxyl acetate hydrolysis. All results supported the classification of the shellfish strains as a new species, for which the name Arcobacter molluscorum sp. nov. with the type strain F98-3T is proposed (=CECT 7696T = LMG 25693T).  相似文献   

15.
A bacterial strain (CCUG 36956T) isolated from drinking water was taxonomically studied in detail. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that it belongs to family Oxalobacteraceae of the beta-subclass of the Proteobacteria, with the highest sequence similarity of 99.3% to the type strain of Herminiimonas fonticola. In the polyamine pattern putrescine and 2-hydroxyputrescine were the predominant compounds. In the polar lipid profile major compounds were phosphatidyl ethanolamine and diphosphatidyl glycerol. Phosphatidyl glycerol and an unknown phospholipid were detected in moderate proportions. The major respiratory quinone was a ubiquinone Q-8 and the major whole cell fatty acids were 16:1 omega7c, 17:1 omega6c, and 16:0. The strain also contained 10:0 3-OH and other fatty acids typical for members of the genus Herminiimonas. The results of DNA-DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain CCUG 36956T from H. fonticola. For this reason, we propose that strain CCUG 36956T represents a new species of the genus Herminiimonas for which we propose the name Herminiimonas aquatilis sp. nov.  相似文献   

16.
A new anamorphic heterobasidiomycetous yeast species, Kurtzmanomyces insolitus, is described using a polyphasic taxonomic approach. The new species has the salient characteristics of the genus Kurtzmanomyces and, additionally, the ability to produce ballistoconidia. Data derived from comparative micromorphological studies, physiological characterisation, ultrastructure and nucleic acid analyses led to assigning the new species to Kurtzmanomyces rather than to the currently accepted genera of ballistoconidia-forming fungi. An emendation of the genus Kurtzmanomyces is proposed to allow the inclusion of the new species.  相似文献   

17.
Several yellow-pigmented isolates, with optimum growth temperatures between 55 and 60 degrees C, were recovered from hot springs in Central Portugal and the Azores. Phylogenetic analysis of the 16S rDNA showed that these organisms represented a new species of the genus Meiothermus. The new isolates could be distinguished from other strains of the species of the genus Meiothermus by biochemical characteristics and the fatty acid composition because they had very high levels of iso C15:0 and iso C17:0 and very low levels of anteiso C17:0 and iso C16:0. On the basis of the results presented here we propose the name Meiothermus timidus for the new species represented by strains SPS-243(T) (=LMG 22897(T)=CIP 108604(T)), RQ-10 and RQ-12.  相似文献   

18.
This work deals with the taxonomic study of 12 orange-pigmented bacteria isolated from permafrost sediments, rice plots, and soils contaminated with wastes from the chemical and salt industries, which were assigned to the genus Brevibacterium on the basis of phenotypic characteristics, as well as of some strains described previously as Brevibacterium linens. The study revealed three genomic species, whose members and the type strains of the closest species of Brevibacterium had DNA similarity levels between 24 and 59%. The strains of the genomic species differed from each other and from the known species of Brevibacterium in some physiological and biochemical characteristics, as well as in the sugar and polyol composition of their teichoic acids. The 16S rDNA sequence analysis confirmed the assignment of the environmental isolates to the genus Brevibacterium and showed the phylogenetic distinction of the three genomic species. The results obtained in this study allow three new Brevibacterium species to be described: Brevibacterium antiquum (type strain VKM Ac-2118T = UCM Ac-411T), Brevibacterium aurantiacum (type strain VKM Ac-2111T = NCDO 739T = ATCC 9175T), and Brevibacterium permense (type strain VKM Ac-2280T = UCM Ac-413T).  相似文献   

19.
Eighteen isolates of a Gram-negative, catalase and oxidase-positive, rod-shaped bacterium, recovered from diseased rainbow trout (Oncorhynchus mykiss), were characterized, using a polyphasic taxonomic approach. Studies based on comparative 16S rRNA gene sequence analysis showed that that the eighteen new isolates shared 99.2-100% sequence similarities. Phylogenetic analysis revealed that isolates from trout belonged to the genus Flavobacterium, showing the highest sequence similarities to F. chungangense (98.6%), F. frigidimaris (98.1%), F. hercynium (97.9%) and F. aquidurense (97.8%). DNA-DNA reassociation values between the trout isolates (exemplified by strain 631-08(T)) and five type strains of the most closely related Flavobacterium species exhibited less than 27% similarity. The G+C content of the genomic DNA was 33.0 mol%. The major respiratory quinone was observed to be menaquinone 6 (MK-6) and iso-C(15:0), C(15:0) and C(16:1) ω7c the predominant fatty acids. The polar lipid profile of strain 631-08(T) consisted of phosphatidylethanolamine, unknown aminolipids AL1 and AL3, lipids L1, L2, L3 and L4 and phospholipid PL1. The novel isolates were differentiated from related Flavobacterium species by physiological and biochemical tests. On the basis of the evidence from this polyphasic study, it is proposed that the isolates from rainbow trout be classified as a new species of the genus Flavobacterium, Flavobacterium oncorhynchi sp. nov. The type strain is 631-08(T) (= CECT 7678(T) = CCUG 59446(T)).  相似文献   

20.
Relationships among species assigned to the yeast genera Pichia, Issatchenkia and Williopsis , which are characterized by the ubiquinone CoQ-7 and inability to utilize methanol, were phylogenetically analyzed from nucleotide sequence divergence in the genes coding for large and small subunit rRNAs and for translation elongation factor-1α. From this analysis, the species separated into five clades. Species of Issatchenkia are members of the Pichia membranifaciens clade and are proposed for transfer to Pichia . Pichia dryadoides and Pichia quercuum are basal members of the genus Starmera . Williopsis species are dispersed among hat-spored taxa in each of the remaining three clades, which are proposed as the new genera Barnettozyma, Lindnera and Wickerhamomyces . Lineages previously classified as varieties of Pichia kluyveri , ' Issatchenkia ' scutulata, Starmera amethionina and ' Williopsis ' saturnus are elevated to species rank based on sequence comparisons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号