首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of larval density on the wing form determination of female tobacco thrips, Frankliniella fusca, were investigated by rearing thrips on leaf disks at 27.5 °C. The developmental period, head width, body length, and forewing length of individuals in each wing morph were determined to assess the relationships among larval density, growth, and wing form. Data showed that higher rearing densities increased the production of female F. fusca brachypters. There was no consistent difference in the mean developmental periods between the two wing morphs or among all 5 density treatments. The body length of females tended to decrease with increasing rearing density, but there was no significant difference in body size between the two wing morphs when they were reared under the same density level.  相似文献   

2.
Effects of temperature and precipitation on the temporal patterns of dispersing tobacco thrips, Frankliniella fusca, and onion thrips, Thrips tabaci, caught on yellow sticky traps were estimated in central and eastern North Carolina and eastern Virginia from 1997 through 2001. The impact that these environmental factors had on numbers of F. fusca and T. tabaci caught on sticky traps during April and May was determined using stepwise regression analysis of 43 and 38 site-years of aerial trapping data from 21 and 18 different field locations, respectively. The independent variables used in the regression models included degree-days, total precipitation, and the number of days in which precipitation occurred during January through May. Each variable was significant in explaining variation for both thrips species and, in all models, degree-days was the single best explanatory variable. Precipitation had a comparatively greater effect on T. tabaci than F. fusca. The numbers of F. fusca and T. tabaci captured in flight were positively related to degree-days and the number of days with precipitation but negatively related to total precipitation. Combined in a single model, degree-days, total precipitation, and the number of days with precipitation explained 70 and 55% of the total variation in the number of F. fusca captured from 1 April through 10 May and from 1 April through 31 May, respectively. Regarding T. tabaci flights, degree-days, total precipitation, and the number of days with precipitation collectively explained 57 and 63% of the total variation in the number captured from 1 April through 10 May and from 1 April through 31 May, respectively.  相似文献   

3.
Frankliniella fusca (Hinds) naturally disperses from winter weeds to crops in spring, causing direct and indirect damage. Field preparation before planting includes use of herbicides or cultivation to kill unwanted vegetation, which adversely affects F. fusca host plants and potentially influences F. fusca dispersal. Common chickweed, Stellaria media (L.), infested with F. fusca, was used as a model to study effects of timing and type of vegetation management on adult dispersal. Infested weeds were caged and F. fusca weekly dispersal was monitored using sticky traps. Weed management treatments performed at an early (14 April-11 May) or late (2 wk after early treatment) date consisted of glyphosate, paraquat, disking, hoeing, or untreated control. Late glyphosate and hoeing treatments resulted in cumulative dispersal statistically similar to or greater than from control plots. Compared with the control, significantly more F. fusca dispersed from the glyphosate and hoeing plots during the 3 wk after treatment. More thrips dispersed from the late paraquat treatment 1 wk post-application than from the control. Dispersal from the disked treatment and early paraquat treatment was similar to that of the control 1- to 3-wk post-treatment. Early treatments resulted in significantly smaller cumulative dispersal than the control in all but one instance. Late disking and paraquat treatments resulted in cumulative F. fusca captures that were statistically similar or less than that in the control. Winter weed management type and timing affect F. fusca dispersal magnitude and duration.  相似文献   

4.
In a 2-yr study, the impacts of different plastic soil mulches, insecticides, and predator releases on Frankliniella thrips and their natural enemies were investigated in field-grown peppers. Ultraviolet light (UV)-reflective mulch significantly reduced early season abundance of adult thrips compared with standard black plastic mulch. This difference diminished as the growing seasons progressed. Late season abundance of thrips larvae was higher in UV reflective mulch compared with black mulch plots. The abundance of the predator Orius insidiosus (Say) was significantly lower in UV-reflective mulch compared with black mulch treatments. Infection of plants with tomato spotted wilt virus, a pathogen vectored by Frankliniella occidentalis (Pergande), was <6%. In the year with the higher disease incidence (2000), UV-reflective mulch plots had significantly less disease (1.9%) compared with black mulch plots (4.4%). Yield was significantly higher in UV-reflective mulch (24,529 kg/ha) compared with black mulch (15,315 kg/ha) during this year. Effects of insecticides varied with species of thrips. Spinosad reduced abundance of F. occidentalis, but not Frankliniella tritici. In contrast, esfenvalerate and acephate reduced numbers of F. tritici and Frankliniella bispinosa, but resulted in higher populations of F. occidentalis. Spinosad was the least disruptive insecticide to populations of O. insidiosus. Releases of O. insidiosus and Geocoris punctipes (Say) reduced populations of thrips immediately after releases; naturally occurring predators probably provided late season control of thrips. Our results suggest that UV-reflective mulch, combined with early season applications of spinosad, can effectively reduce abundance of thrips in field-grown pepper.  相似文献   

5.
The systemic effects of neem on the western flower thrips, Frankliniella occidentalis (Pergande), were investigated in laboratory trials using green bean, Phaseolus vulgaris L., in arena and microcosm experiments. In arena experiments, systemic effects of neem against western flower thrips larvae on primary bean leaves were observed with maximum corrected mortality of 50.6%. In microcosm experiments using bean seedlings, higher efficacy in the control of western flower thrips were observed with soil applications of neem on a substrate mixture (i.e., Fruhstorfer Erde, Type P, and sand) in a 1:1 ratio (93% corrected mortality) compared with application on the commercial substrate only (76% corrected mortality). However, longer persistence of neem was observed with soil application on the commercial substrate, which showed effects against thrips for up to 6 d after application. In addition to systemic effects observed on all foliage-feeding stages of western flower thrips, mortality on contact and repellent effects were observed on soil-inhabiting stages after soil applications of neem. Finally, bean seedlings grown from seeds pregerminated for 3 d in neem emulsion were also toxic to western flower thrips.  相似文献   

6.
Field tests were conducted during 2001 and 2002 in northeastern North Carolina to evaluate the impact of cultural practices and in-furrow insecticides on the incidence of Tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae, TSWV), which is transmitted to peanut, Arachis hypogaea L., primarily by tobacco thrips, Frankliniella fusca Hinds (Thysanoptera: Thripidae). Treatments included in row plant populations of 7, 13, and 17 plants per meter; the virginia market-type 'NC V-11' and 'Perry'; planting dates of early and late May; and phorate and aldicarb insecticide applied in-furrow. The incidence of plants expressing visual symptoms of spotted wilt was recorded from mid-June through mid-September. Treatment factors that reduced the incidence of symptoms of plants expressing spotted wilt symptoms included establishing higher plant densities, delaying planting from early May until late May, and applying the in-furrow insecticide phorate. Peanut cultivar did not have a consistent, significant effect on the incidence of symptomatic plants in this experiment.  相似文献   

7.
Host plant effects of tomato, Lycopersicon esculentum Mill., and chickweed, Stellaria media (L.) Vill., foliage infected and uninfected with Tomato spotted wilt virus (family Bunyaviridae, genus Tospovirus, TSWV) on the ovipositional preferences of western flower thrips, Frankliniella occidentalis (Pergande), and tobacco thrips, Frankliniella fusca (Hinds), were investigated for whole plants in the greenhouse. In addition, the preference for leaf disks from the same host plants was investigated under a range of temperatures, 15-30 degrees C at a photoperiod of 12:12 (L:D) h, and at three photoperiods, 6:18, 12:12, and 18:6, at 20 degrees C in no-choice and choice studies conducted in growth chambers. In a choice test, F. fusca oviposited significantly more eggs per whole plant foliage over a 7-d period than F. occidentalis by an average ratio of 3:1 over both tomato and chickweed. The optimum temperature for oviposition of F. occidentalis and F. fusca was 24.5 and 24.9 degrees C, respectively. Both species laid significantly more eggs under the longest daylight hours tested, 18:6, in the choice study. Temperature and photoperiod did not significantly interact in terms of thrips ovipositional preference. Ovipositional preference for chickweed or tomato foliage was different for each thrips species in the choice and no-choice tests. However, both thrips species laid significantly more eggs per square centimeter of leaf area in chickweed than in tomato in the whole plant choice test.  相似文献   

8.
The effects of tomato, Lycopersicum spp., leaves treated with imidacloprid on probing and settling behavior of Frankliniella fusca (Hinds) and Frankliniella occidentalis (Pergrande) were examined using an electrical penetration graph technique and an intact leaf bioassay. For each experiment, thrips were subjected to nontreated plants and plants treated with either of two rates of imidacloprid: 7.81 and 41.55 microg [(AI)] per plant. F. fusca probed less frequently on plants treated with the high rate of imidacloprid compared with the nontreated plants. The duration of F. fusca noningestion probing waveforms and ingestion was shorter on plants treated with the high rate of imidacloprid compared with that on nontreated plants. In contrast, F. occidentalis probed longer and more frequently on plants treated with either the low or high imidacloprid rates compared with nontreated plants. They also ingested more frequently and for longer durations on plants treated with the high rate compared with nontreated plants. The duration and frequency of noningesting probing waveforms were greater on the imidacloprid-treated plants compared with the nontreated plants. F. occidentalis probed and ingested more frequently and for a longer duration than F. fusca on plants treated with the high rate of imidacloprid. F. fusca ingested more frequently and the duration of ingestion was longer than F. occidentalis in untreated plants. F. fusca and F. occidentalis settling behavior differed within the first 30 min in a choice bioassay. F. fusca preferred settling on leaves of nontreated plants, whereas F. occidentalis showed no preference in an intact leaf choice bioassay.  相似文献   

9.
Thrips-transmitted Iris yellow spot virus (IYSV) (Family Bunyaviridae, Genus Tospovirus) affects onion production in the United States and worldwide. The presence of IYSV in Georgia was confirmed in 2003. Two important thrips species that transmit tospoviruses, the onion thrips (Thrips tabaci (Lindeman)) and the tobacco thrips (Frankliniella fusca (Hinds)) are known to infest onion in Georgia. However, T. tabaci is the only confirmed vector of IYSV. Experiments were conducted to test the vector status of F. fusca in comparison with T. tabaci. F. fusca and T. tabaci larvae and adults reared on IYSV-infected hosts were tested with antiserum specific to the nonstructural protein of IYSV through an antigen coated plate ELISA. The detection rates for F. fusca larvae and adults were 4.5 and 5.1%, respectively, and for T. tabaci larvae and adults they were 20.0 and 24.0%, respectively, indicating that both F. fusca and T. tabaci can transmit IYSV. Further, transmission efficiencies of F. fusca and T. tabaci were evaluated by using an indicator host, lisianthus (Eustoma russellianum (Salisbury)). Both F. fusca and T. tabaci transmitted IYSV at 18.3 and 76.6%, respectively. Results confirmed that F. fusca also can transmit IYSV but at a lower efficiency than T. tabaci. To attest if low vector competency of our laboratory-reared F. fusca population affected its IYSV transmission capability, a Tomato spotted wilt virus (Family Bunyaviridae, Genus Tospovirus) transmission experiment was conducted. F. fusca transmitted Tomato spotted wilt virus at a competent rate (90%) suggesting that the transmission efficiency of a competent thrips vector can widely vary between two closely related viruses.  相似文献   

10.
Within-plant and within-field distribution of larvae and adults of an invasive thrips species, Frankliniella schultzei (Trybom) on cucumber, Cucumis sativus L. was studied in 2008 and 2009 in Homestead, Florida. The majority of thrips were found inhabiting flowers of cucumber plants and little or none was found on the other parts of the plant. Thrips were aggregated in the field, as indicated by the two regression models, Taylor's power and Iwao's patchiness regression. Iwao's patchiness regression provided a better fit than Taylor's power law. The distribution was clumped during the initial stages of infestation at the edges of the field and became random thereafter. However, with increase in population density, thrips again formed aggregates in the field. Based on the average pest density per flower in a ~0.25-ha field, minimum sample size (number of flowers) required at the recommended precision level (0.25) was 51. The number of samples required at two levels of predetermined pest density was also calculated, which would help growers in collecting optimum number of samples required to determine the correct threshold level of pest in fields. Results from seasonal abundance indicated that density of thrips peaked during the fifth week of sampling with an average of 25 and 34 adults per ten flowers during autumn 2008 and 2009, respectively. Results from these studies will help growers and extension personnel in understanding the abundance and distribution of F. schultzei in the field, which are important components required in developing a sound management program.  相似文献   

11.
西花蓟马的SCAR分子检测技术   总被引:18,自引:0,他引:18  
西花蓟马Frankliniella occidentalis (Pergande)是一种世界性入侵害虫,寄主范围广,危害严重,2003年首次在我国发生危害,并有进一步扩散蔓延的趋势。针对蓟马类害虫虫体微小、形态相似,难以准确快速区分的问题,采用特征序列扩增区域(SCAR)标记技术,以西花蓟马及与之同域发生的其他种类蓟马为对象,筛选出1对西花蓟马特异性引物(FOMF/FOMR),其扩增片段大小为320 bp。种特异性检测结果显示,该对引物只对西花蓟马的基因组DNA具有扩增能力,对同域发生的花蓟马F. intonsa (Trybom)、禾花蓟马F. tenuicornis (Uzel)、烟蓟马Thrips tabaci L. 等41种蓟马不具有扩增效果。该对引物不仅对不同虫态的西花蓟马具有扩增能力,而且在西花蓟马发生地的寄主植物组织内亦检测到了其卵的存在。同时,该检测技术灵敏度高,对成虫的最低检出阈值为1/160头。本检测技术在口岸检疫以及花卉、蔬菜和种苗调运中的害虫检测和监测中具有重要意义。  相似文献   

12.
入侵害虫西花蓟马及其他8种常见蓟马的分子鉴定   总被引:12,自引:0,他引:12  
用PCR产物直接测序法对入侵害虫西花蓟马和其他8种蓟马的线粒体 COⅠ基因433 bp片段测序,获得62个个体的序列。分子数据分析显示: 种内个体间平均遗传距离在0~0.005之间,2003年在北京发现的西花蓟马与欧洲等地区报导的西花蓟马不存在明显的遗传差异; 9种蓟马种间平均遗传距离为0.213。构建的NJ树可以很好的显示蓟马的聚类,物种各单元型最初分支自展值均达到100%。结果表明,基于PCR及直接测序技术的分子鉴定可以达到准确鉴定蓟马物种之目的。  相似文献   

13.
【目的】Wolbachia 是一种广泛存在于节肢动物中的胞内共生细菌,影响寄主的生物学特性。花蓟马 Frankliniella intonsa (Trybom)是重要的害虫,对农作物及园林植物造成危害。本研究旨在明确 Wolbachia 在花蓟马中的感染情况,并分析其与寄主线粒体DNA多样性的关系。【方法】采集中国境内26个花蓟马自然种群,运用多位点序列分型技术(multilocus sequence typing, MLST)对其体内 Wolbachia 感染率及株系进行分析;利用线粒体 COI 分子标记研究花蓟马的遗传分化及遗传多样性;通过比较感染和未感染 Wolbachia 个体 COI 数据,探究 Wolbachia 多样性与寄主线粒体DNA多样性之间的关系。【结果】花蓟马中 Wolbachia 的感染率为0%~60%,共检测到5种 Wolbachia 株系(wFint1,wFint2,wFint3,wFint4及wFint5),均属于B大组且形成一个单系群。Wolbachia感染情况与这些花蓟马种群(除CC, GZ, TA和TY, N<5)的线粒体DNA多样性相关,表现为不感染 Wolbachia 的种群中线粒体DNA单倍型多样性(Hd)与核苷酸多样性(Pi)均高于感染 Wolbachia 的种群,且 Wolbachia 感染率与 Hd 呈显著负相关( P <0.05)。AMOVA分析表明花蓟马线粒体DNA遗传分化与Wolbachia 感染情况有关。【结论】 Wolbachia 可能在侵染花蓟马种群后出现遗传分化;Wolbachia 感染与寄主线粒体DNA多样性有关。  相似文献   

14.
Two aspects of the within-plant distribution of Thrips tabaci Lindeman (Thysanoptera: Thripidae) on onion, Allium cepa L., plants were investigated: 1) diurnal variations in the distribution of adults and larvae between basal and upper sections of onion leaves, and 2) between-leaf and within-leaf distribution of the eggs. The diurnal investigations showed that higher proportions of larvae than of adults congregated at the basal sections of plants, particularly when plants were young and thrips density was low. As plants matured and thrips density increased, the larvae became more dispersed. Regardless of plant size, there were always more adults in the upper than basal plant sections. There were no clear time-windows during the 24-h diurnal cycle when more thrips were in the upper plant parts. T. tabaci eggs were laid everywhere in the plant. Leaves of intermediate ages had more eggs than older or younger leaves. Within leaves, the white leaf sheath received the least eggs and leaf tips received slightly more eggs than leaf sheaths. The highest egg density was found between the green leaf base and the leaf tips. Regardless of plant size, more than half of all eggs were laid above the basal sections. The percentage increased to >95% in mature plants. Except when plants were small the outer leaves were preferred over inner leaves and upper leaf sections preferred over lower leaf sections as egg-laying sites by adults. Implications of the results in the management of T. tabaci are discussed.  相似文献   

15.
Irradiation at a minimum absorbed dose of 250 Grays (Gy) has been approved by the USDA as a quarantine treatment for certain fruits in Hawaii to control four species of tephritid fruit flies. Subsequent research must determine whether this dose is sufficient to control other quarantine pests, such as mealybugs, thrips, mites, beetles, moths, and scale insects, on other commodities with export potential that are approved for irradiation treatment for fruit flies. This study demonstrated that irradiation at 250 Gy caused non‐emergence of eggs and pupae, failure of larval development, and sterility of adults of yellow flower thrips, Frankliniella schultzei (Trybom). Adults were the most resistant stage tested, with 100% mortality at 57, 36 and 30 days post‐treatment for the 250, 350 and 400 Gy treatments, respectively. Untreated adults survived up to 66 days. After receiving an irradiation dose of 250 Gy, no one‐ to two‐day old eggs hatched successfully, while 3–4‐day old eggs hatched but did not develop beyond the larval stage. Of the controls, 96.0% of 1–2‐day old eggs and 75.9% of the 3–4‐day old eggs hatched and survived through pupation. No first or second instar larvae treated with a target dose of 250 Gy were able to pupate. When pupae were irradiated at 250 Gy, 37% emerged as adults and all were sterile compared to 88.3% emergence of controls.  相似文献   

16.
The genetic basis of spinosad resistance was investigated in the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). The resistant strain, selected in the laboratory for spinosad resistance from a pool of thrips populations collected in Almeria (southeastern Spain), showed a very high resistance to spinosad (356,547-fold based on LC50 values) compared with the laboratory susceptible strain. Mortality data from reciprocal crosses of resistant and susceptible thrips indicated that resistance was autosomal and not influenced by maternal effects. Analysis of probit lines from the parental strains and reciprocal crosses showed that resistance was expressed as an almost completely recessive trait. To determine the number of genes involved, a direct test of monogenic inheritance based on the backcrosses suggested that resistance to spinosad was probably controlled by one locus. Another approach, which was based on phenotypic variances, showed that nE, or the minimum number of freely segregating genetic factors for the resistant strain, equaled 0.59.  相似文献   

17.
The effect of tomato, Solanum lycopersicum L., plant and leaf age on the probing and settling behavior of Frankliniella fusca (Hinds) and F. occidentalis (Pergande) was studied using electrical penetration graph technique and whole plant bioassays. Male and female F. fusca probed and ingested more and for longer periods of time on 3- and 4-wk-old plants compared with 6- and 8-wk-old plants. Female F. fusca probed and ingested more frequently than males in the plant age experiment, but not in the leaf age experiment. F. fusca probed and ingested more frequently on 2- and 4-wk-old leaves compared with 1-wk-old leaves. Plant age did not affect the probing frequency or duration of F. occidentalis; however, males probed and ingested longer than females in the plant age experiment and on the oldest leaf in the leaf age experiment. Both thrips species preferred to settle on 3-wk-old plants. F. fusca preferred to settle on 4-wk-old leaves after settling randomly for an hour. F. occidentalis showed no settling preference relative to leaf age. The preference of F. fusca for young plants suggests that this species could attack tomato plants at a very early stage, which is important for understanding its role as a vector in the transmission of Tospovirus in the field.  相似文献   

18.
Sampling techniques for thrips (Thysanoptera: Thripidae) were compared in preflowering tomato plants at the Coastal Plain Experiment Station in Tifton, GA, in 2000 and 2003, to determine the most effective method of determining abundance of thrips on tomato foliage early in the growing season. Three relative sampling techniques, including a standard insect aspirator, a 946-ml beat cup, and an insect vacuum device, were compared for accuracy to an absolute method and to themselves for precision and efficiency of sampling thrips. Thrips counts of all relative sampling methods were highly correlated (R > 0.92) to the absolute method. The aspirator method was the most accurate compared with the absolute sample according to regression analysis in 2000. In 2003, all sampling methods were considered accurate according to Dunnett's test, but thrips numbers were lower and sample variation was greater than in 2000. In 2000, the beat cup method had the lowest relative variation (RV) or best precision, at 1 and 8 d after transplant (DAT). Only the beat cup method had RV values <25 for all sampling dates. In 2003, the beat cup method had the lowest RV value at 15 and 21 DAT. The beat cup method also was the most efficient method for all sample dates in both years. Frankliniella fusca (Pergande) was the most abundant thrips species on the foliage of preflowering tomato in both years of study at this location. Overall, the best thrips sampling technique tested was the beat cup method in terms of precision and sampling efficiency.  相似文献   

19.
Five Beauveria bassiana strains were evaluated for control of western flower thrips. Strain RSB was the most virulent, causing 69–96% mortality at concentrations of 1×104–1×107 conidia mL?1, 10 days after inoculation of first instars. In greenhouse trials, RSB applied to broccoli foliage significantly reduced adult and larval populations.  相似文献   

20.
The spread of the western flower thrips, Frankliniella occidentalis (Pergande), has resulted in the world‐wide destabilization of established integrated pest management programs for many crops. It is hypothesized that frequent exposure to insecticides in intensive agriculture selected for resistant populations, which allowed invasive populations in the eastern USA to overcome biotic resistance from the native community of species. Research conducted in Florida to understand the role of biotic factors in limiting the abundance of the western flower thrips is reviewed. Orius spp. (Hemiptera: Anthocoridae) are effective predators that suppress populations of thrips on crop and non‐crop hosts in southern and northern Florida. Orius are more effective predators of the western flower thrips than the native flower thrips, F. tritici (Fitch) and F. bispinosa (Morgan). The native species are competitors of the western flower thrips. Excessive fertilization and the use of broad‐spectrum insecticides in crop fields further enhances populations of the western flower thrips. Interactions with native species clearly limit the abundance of western flower thrips in Florida, but populations are abundant in fertilized crop fields where application of insecticides excludes predators and competitor species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号