首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane-associated decay accelerating factor (DAF) of human erythrocytes (Ehu) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the Ehu acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact Ehu with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated from urine. Nitrous acid deamination cleavage of Ehu DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) released the [125I]TID label in a parallel fashion as from [125I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [3H]ethanolamine resulted in rapid 3H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. Our findings indicate that DAF and AChE are anchored in Ehu by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi.  相似文献   

2.
Decay-accelerating factor (DAF) is an integral membrane protein that inhibits amplification of the complement cascade on the cell surface. We and other investigators have shown that DAF is part of a newly characterized family of proteins that are anchored to the cell membrane by phosphatidylinositol (PI). The group includes the variant surface glycoprotein (VSG) of African trypanosomes, the p63 protein of Leishmania, acetylcholinesterase (AChE), alkaline phosphatase, Thy-1, 5'-nucleotidase, and RT6.2--an alloantigen from rat T cells. The structure of the membrane anchor has been best characterized for VSG, but chemical studies of the membrane anchors of AChE and Thy-1 suggest that similar glycolipid moieties anchor these proteins to the cell surface. In the VSG, the membrane anchor consists of an ethanolamine linked covalently to an oligosaccharide and glucosamine; the entire complex is anchored to the cell membrane by PI. Immunologically, this glycolipid defines an epitope, the cross-reacting determinant (CRD), that is only revealed after removal of the diacyl glycerol anchor by a phospholipase C. By Western blotting, we show here that DAF-S (DAF released from the membrane by PI-specific phospholipase C [PIPLC]) also contains CRD. Using a newly developed immunoradiometric assay (IRMA) in which the solid-phase capturing antibody is a monoclonal antibody to DAF and the second antibody is anti-CRD, we have been able to quantitate DAF-S. By IRMA, we show that the reaction between anti-CRD and DAF-S is specific, since the binding is competitively inhibited only by the soluble form of the VSG. These observations further support the concept that the glycolipid anchors of this new family of proteins have similar structures. DAF is also found as a soluble protein in various tissue fluids as well as in Hela cell supernatants. No evidence for the presence of the CRD epitope was found on these proteins, suggesting that these forms of DAF are not released from the surface of cells by endogenous phospholipases.  相似文献   

3.
Decay-accelerating factor (DAF) is a membrane glycoprotein found on various cells that are in contact with complement. It inhibits the formation of the C3 convertases of the complement system, both the classic (C4b2a) and alternative (C3bBb) pathways. In this investigation, we used a homobifunctional cross-linking reagent to search for a DAF ligand on the surface of cells subjected to complement attack. We found that DAF forms complexes with C4b and C3b deposited on the same erythrocytes, but not with the physiologic degradation products of these complement fragments, that is, C4d or C3dg. Taken together with prior observations that DAF action is reversible, and DAF does not affect the structure of C4b or C3b, these findings suggest that DAF functions by competitively inhibiting the uptake of C2 or factor B, and preventing the assembly of the C3 convertases.  相似文献   

4.
The biosynthesis and post-translational modification of placental alkaline phosphatase were studied in human choriocarcinoma cells, JEG-3. Pulse-chase experiments with [35S]methionine demonstrated that placental alkaline phosphatase was synthesized as a major precursor form with Mr 63,000, which was then converted to a mature form with Mr 66,000, by processing of its N-linked oligosaccharides from the high-mannose type to the complex type. In addition, the two forms of the protein were found to be modified by a glycophospholipid, components of which were characterized by metabolic incorporation into placental alkaline phosphatase of 3H-labeled compounds such as myo-inositol, palmitic acid, stearic acid, mannose, glucosamine, and ethanolamine. When placental alkaline phosphatase labeled with these compounds was treated with phosphatidylinositol-specific phospholipase C or papain, the phospholipase C removed only the 3H-labeled fatty acids, whereas papain, that is known to cleave the C-terminal region, released all the radioactive glycolipid components including [3H]ethanolamine. More detailed analysis with shorter pulse-chase experiments demonstrated that placental alkaline phosphatase was primarily synthesized as a form with Mr 64,500 which was not yet labeled with [3H]palmitic acid. This form was converted by papain digestion to the above-mentioned major precursor with Mr 63,000. Taken together, these results suggest that placental alkaline phosphatase is initially synthesized as the precursor with Mr 64,500, which is immediately converted to the intermediate form with Mr 63,000 by simultaneously occurring proteolysis of the C terminus and replacement by the glycophospholipid, and finally to the mature form with Mr 66,000 by terminal glycosylation of its N-linked oligosaccharides. The glycophospholipid thus attached is considered to function as the membrane-anchoring domain of placental alkaline phosphatase.  相似文献   

5.
The biosynthesis and oligosaccharide structure of the human complement regulatory glycoprotein decay-accelerating factor (DAF) were studied in erythrocytes and cell lines. Initial information relative to carbohydrate moieties of DAF was obtained by enzymatic digestions. The 74,000 Mr erythrocyte DAF was lowered 3000 by endoglycosidase F, whereas endoglycosidase H had no effect, indicating one N-linked complex-type unit. Treatment with endo-alpha-N-acetylgalactosaminidase to remove O-linked oligosaccharides resulted in a 48,000 Mr molecule (67% of the Mr shift being due to sialic acid), which decreased to 45,000 Mr after sequential endoglycosidase F treatment. To additionally define the oligosaccharide structure and identify precursors in biosynthetic pathways, DAF was studied in the HL-60 cell line differentiated by vitamin D toward monocytes. Pulse-chase experiments with [35S]methionine revealed a precursor species of 43,000 Mr that underwent an early post-translational modification to a 46,000 Mr intermediate, and subsequently was chased into a mature species of 80,000 Mr that aligned with 125I surface-labeled DAF from these cells. All three forms of DAF were approximately 3000 lower in Mr in the presence of tunicamycin. The two lower Mr DAF species were sensitive to endoglycosidases F and H but not to neuraminidase or endo-alpha-N-acetylgalactosaminidase. In summary, DAF is synthesized as a 43,000 Mr precursor species containing one N-linked high-mannose unit. Before entering the central region of the Golgi, it is converted to a 46,000 Mr species by an as yet unknown post-translational modification. The 46,000 Mr form is converted to the 74,000 Mr (erythrocyte) or 80,000 Mr (leukocyte) membrane form of DAF by the addition of multiple, sialylated O-linked oligosaccharide chains (responsible for the large electrophoretic mobility shift) and conversion of the single N-linked high-mannose unit to a complex-type structure. The cell-specific Mr variation between red and white blood cells arises during this post-translational modification from the 46,000 Mr biosynthetic intermediate to the mature DAF species expressed on the cell surface.  相似文献   

6.
Concentrations of trypsin that bring about aggregation of hepatoma tissue culture (HTC) cells also release from the cell surface an Mr = 55,000 glycopeptide fragment. This glycopeptide fragment also accumulates in the medium, including serum-free medium, as a normal consequence of membrane protein turnover. The trypsin-released glycopeptide is labeled when cells are grown in the presence of fucose or leucine before treatment of the cells with the protease. Similarly, the glycopeptide fragment can be labeled by reacting cells in situ by lactoperoxidase-catalyzed radioiodination or by tritiated borohydride reduction of cells treated first with neuraminidase and galactose oxidase. The tryptic glycopeptide fragment was purified by concanavalin A-Sepharose chromatography, and hydroxyapatite chromatography in the presence of dodecyl sulfate. The amino acid and carbohydrate composition was determined, as was the sensitivity of the purified glycopeptide to a variety of endo- and exoglycosidases. The purified glycopeptide contains an average of 17 sialic acid residues and hence, shows charge heterogeneity after electrophoresis in isoelectric focusing gels. The charge heterogeneity can be eliminated completely by treatment with neuraminidase. The glycopeptide after this treatment is homogeneous. The trypsin-sensitive membrane glycoprotein which is the source of the Mr = 55,000 glycopeptide was identified by two-dimensional gel electrophoretic analysis of labeled cells, treated or not treated with trypsin. This glycoprotein, which has an apparent molecular weight of 85,000 and forms a homodimer in the presence of calcium ions, was purified and its identity as the parent of the Mr = 55,000 glycopeptide was confirmed by showing that the same Mr = 55,000 fragment was released by trypsin from the purified glycoprotein as was released from the intact cells.  相似文献   

7.
Decay accelerating factor (DAF) is a glycophospholipid-anchored membrane glycoprotein that protects mammalian host cells from inadvertant complement lysis. The effects of inhibiting mucin-type O-glycosylation on the cell surface expression of DAF were studied by introducing an expression vector for human DAF into wild-type Chinese hamster ovary and ldlD cells. The ldlD cells express reversible defects in the addition of galactose and N-acetylgalactosamine (GalNAc) to oligosaccharide chains on glycoproteins and glycolipids. Mucin-type O-glycosylation of proteins is inhibited in ldlD cells and can be selectively corrected by the addition of GalNAc to the culture medium. The attachment of a phosphatidylinositol phospholipase C-sensitive glycolipid anchor to DAF and its efficient sorting to the cell surface in ldlD cells were independent of galactose and GalNAc additions to glycolipids and proteins. Attachment of galactose and GalNAc to DAF's glycolipid anchor were apparently not required for its normal function. However, in the absence of O-glycosylation DAF was proteolytically cleaved soon after reaching the cell surface, and a large fragment of DAF was released into the culture medium. This rapid proteolysis/release resulted in the expression of very low steady state levels of O-glycosylation-deficient DAF as measured by immunoblotting. These results, in conjunction with those obtained from studies of three other membrane glycoproteins expressed in ldlD cells, suggest that O-linked sugars on membrane glycoproteins may frequently play a role in determining the level of cell surface expression of these proteins.  相似文献   

8.
Decay-accelerating factor (DAF) and complement receptor 1-related gene/protein y (Crry) are two membrane-bound complement regulators on murine erythrocytes that inhibit C3/C5 convertases. Previously, we found that Crry- but not DAF-deficient erythrocytes were susceptible to alternative pathway complement-mediated elimination in vivo. To determine whether it is a unique activity or a higher level expression of Crry makes it indispensable on murine erythrocytes, we over-expressed DAF on Crry-deficient (Crry(-/-)) erythrocytes by retroviral vector-mediated DAF gene transduction of bone marrow stem cells. DAF retrovirus-transduced erythrocytes expressed 846 +/- 127 DAF molecules/cell (DAF(high)) compared with 249 +/- 94 DAF molecules/cell (DAF(low)) and 774 +/- 135 Crry molecules/cell on control mouse erythrocytes. DAF(high)-Crry(-/-) erythrocytes were significantly more resistant than either DAF(low)-Crry(-/-), DAF(-/-) -Crry(+/+) or wild-type erythrocytes to classical pathway complement-mediated C3 deposition in vitro. Furthermore, increased DAF expression rescued Crry(-/-) erythrocytes from acute alternative pathway complement attack in vivo. Notably, long term monitoring revealed that DAF(high)-Crry(-/-) erythrocytes were still more susceptible than wild-type erythrocytes to complement-mediated elimination as they had a shorter half-life in complement-sufficient mice but survived equally well in complement-deficient mice. These results suggest that both a high level expression and a more potent anti-alternative pathway complement activity of Crry contributed to its indispensable role on murine erythrocytes. Additionally, they demonstrate the feasibility of using stem cell gene therapy to correct membrane complement regulator deficiency on blood cells in vivo.  相似文献   

9.
The inositol ring in the glycoinositolphospholipid (GPI) anchor of human decay-accelerating factor (DAF) is unmodified in nucleated cells, whereas it is fatty acid acylated in erythrocytes (Ehu). To assess the effect of this and of the glycerol sn-2-associated acyl substituent on the abilities of DAF to cell membrane incorporate and function, 1) endogenous (physiologically anchored) DAF proteins bearing three- and two-"footed" GPI anchors were purified from Ehu and HeLa cells and 2) synthetic DAF variants bearing alternative one- "footed" anchors (retaining either the sn-1 glycerol- or inositol-associated lipid) were prepared by alkaline hydroxylamine treatment and phosphatidylinositol-specific phospholipase D digestion of Ehu DAF, respectively. The different DAF species were added to antibody-sensitized sheep erythrocytes (EshA) and their abilities to insert into the plasma membranes of the cells and control subsequent complement activation on their surfaces were compared. DAF proteins bearing all four GPI anchor structures adhered to the Esh hemolytic intermediates and inhibited expression of C3 convertase (C4b2a) activity. However, mixing of DAF-treated EshA with untreated EshAC142 and stripping of cell-associated DAF proteins with vesicles showed that only the physiologically anchored proteins remained stably associated with the lipid bilayer and functioned intrinsically. Both three- and two-"footed" Ehu and HeLa DAF proteins exhibited comparable ability to incorporate and function in the intermediates as well as to accumulate to levels 1000-fold higher/cell in Schistosoma mansoni schistosomula. These findings indicate that 1) an intact inositolphospholipid-containing GPI anchor is necessary for stable membrane integration and intrinsic function, 2) endogenous GPI anchors (with either unsubstituted and acylated inositol) incorporate and function with comparable efficiency, and 3) the transfer of either endogenous DAF form can account for the previously described circumvented uptake of human C3b by blood stage schistosomula.  相似文献   

10.
Exposure of sarcoplasmic reticulum to trypsin in the presence of 1 M sucrose results in degradation of the Mr = 102,000 ATPase enzyme to two fragments of Mr = 55,000 and 45,000 with subsequent appearance of fragments of Mr = 30,000 and 20,000. These fragments were purified by column chromatography in sodium dodecyl sulfate. Antibodies were raised against the ATPase and the Mr = 55,000, 45,000, and 20,000 fragments. There was no antigenic cross-reactivity between the Mr = 55,000 and 45,000 fragments, indicating that they were derived from a single linear cleavage of the larger enzyme. There was antigenic cross-reactivity between the Mr = 20,000 and 55,000 fragments, indicating an origin of the Mr = 20,000 fragment in the Mr = 55,000 fragment. None of the antibodies inhibited (Ca2+ + Mg2+)-dependent ATPase or Ca2+ transport. The Mr = 20,000 fragment and the Mr = 55,000 fragment were active in Ca2+ ionophore assays. The active site of ATP hydrolysis was labeled with [gamma-32P]ATP and the site of ATP binding was labeled with tritiated N-ethylmaleimide. In both cases radioactivity was found in the intact ATPase and in the Mr = 55,000 and 30,000 fragments, indicating that the Mr = 30,000 fragment was also derived from the Mr = 55,000 fragment. Amino acid composition data showed that the Mr = 45,000 fragment contained about 60% nonpolar and 40% polar amino acids, while the Mr = 55,000 fragment and the Mr = 20,0000 fragment contained about equal amounts of polar and nonpolar amino acids. Studies of the reaction of various antibodies at the external surface of sarcoplasmic reticulum vesicles showed that the ATPase was exposed, whereas calsequestrin and the high affinity Ca2+-binding protein were not. The use of antibodies against the various fragments indicated that the Mr = 55,000 fragment was in large part exposed, whereas the Mr = 20,000 and the 45,000 fragments were only poorly exposed. It is probable that the site of ATP hydrolysis in the Mr = 55,000 fragment is external, whereas the ionophore site is only partially exposed and the Mr = 45,000 fragment is largely buried within the membrane.  相似文献   

11.
The phosphoramidon-insensitive endopeptidase-2 in rat renal brush borders was investigated by immunochemical approaches with a rabbit polyclonal antibody raised to the purified enzyme released from the membrane by papain. An immunoaffinity column successfully purified the detergent-solubilized form of endopeptidase-2. This preparation had an apparent subunit Mr of 80,000, and did not show the two subunits, of Mr 80,000 and 74,000, consistently found in the papain-solubilized forms, indicating that the latter resulted from proteolysis by papain. SDS/polyacrylamide-gel electrophoresis of non-reduced samples of the enzyme revealed a band of Mr 220,000, confirming the presence of disulphide-bridged subunits. Treatment with endoglycosidases H and F generated smaller molecular forms, indicating that endopeptidase-2 contained about 30% asparagine-linked carbohydrate and that a few of these oligosaccharide chains were of the high-mannose type. Treatment with phosphatidylinositol-specific phospholipase indicated that the enzyme did not possess a glycolipid membrane anchor. A survey of rat tissues examined immunohistochemically and by immunoblotting revealed that only the kidney and intestinal tract expressed the antigen in significant amounts. Although some weak staining was seen in salivary glands and thyroid, other organs and tissues including brain and spinal cord were negative by both immunochemical techniques. In the kidney the antigen was confined to the lumen of the proximal tubule and was seen mainly in the population of juxtamedullary nephrons. In the gut, luminal staining was observed throughout its whole length, from duodenum to rectum. Excellent cross-reactivity of the antibody with Balb/c mouse tissues was observed. Immunohistochemistry of mouse kidney and gut revealed a distribution identical with that observed in the rat. Immunopurification of the detergent-solubilized mouse kidney antigen showed it to be a protein containing disulphide-linked subunits of Mr 90,000. It possessed endopeptidase-2-like activity, but was more efficient in hydrolysing azo-casein and less efficient in hydrolysing a model substrate than the rat enzyme. The close similarity between rat endopeptidase-2 and mouse meprin is further supported by these results.  相似文献   

12.
Binding studies using purified decay-accelerating factor (DAF), CR1, and Factor H indicate that the primary interaction of DAF with C3 convertases is with the Bb or C2a subunits, whereas CR1 and Factor H interact primarily with the C3b or C4b subunits. The ability of soluble DAF, CR1, or Factor H to decay C3b,Bb bound to zymosan was inhibited by various concentrations of fluid-phase competitors (C3b, Bb, C3b,Bb, C3b,B, C4b, or C4b,C2a) in 0.1% NP-40 at 22 degrees C. The apparent association constants (appKa) for DAF were 0.045, 0.067, 0.91, 0.71, 0.00045, and 0.53 microM-1, respectively. The appKa for CR1 were 0.50, 0.0040, 1, 1, 1, and 1.1 microM-1, respectively. The appKa for Factor H were 4.3, 0.0005, 2.9, 6.3, 0.27, and 0.29 microM-1, respectively. Thus, C3b binds to DAF with a 10-fold lower affinity than to CR1 and a 100-fold lower affinity than to Factor H. The appKa of C3b,Bb for the three proteins were more similar: DAF (0.91 microM-1), CR1 (1 microM-1), and Factor H (2.9 microM-1). DAF binds to Bb with a 50% higher affinity than to C3b, and to C4b,C2a with a 1000-fold higher affinity than to C4b alone. In contrast, CR1 and Factor H bind almost equally well to the C3 convertases and to their noncatalytic subunits. The affinity of DAF for CVF,Bb was similar to its affinity for Bb alone, suggesting that DAF does not recognize conformational determinants unique to Bb in C3 convertases.  相似文献   

13.
The decay-accelerating factor (DAF) is a cell membrane glycoprotein that functions in the control of C activation. We studied the modulation of membrane DAF on polymorphonuclear cells (PMN) by using anti-DAF antibodies. Fluorescence-activated cell sorter analysis showed that DAF expression was reduced by 43 +/- 7% on resting or stimulated cells that were held at 37 degrees C for 30 min when compared with those kept on ice. Most of this reduction occurred within the first 15 min, and was followed by a gradual further decrease in surface DAF. PMN that were held at 37 degrees C for varying periods of time before DAF measurement had a gradual decrease suggestive of release of DAF from the PMN membrane or endocytosis. To examine the latter, PMN were reacted with anti-DAF at 0 degree C, followed by 125I-Fab'2 secondary antibodies at either 0 degree C or 37 degrees C, and subsequently treated with pronase. Thirty +/- 11% of the 125I remained bound to cells kept at 37 degrees C compared to 2% in those held at 0 degrees C. Internalization was further confirmed by electron microscopy. In PMN that were not exposed to pronase, 26 +/- 2% of the surface-associated 125I was released at 37 degrees C compared with 7% at 0 degrees C. Immunoprecipitation and SDS-PAGE of surface-labeled PMN showed that the temperature-dependent released DAF had a lower m.w. than membrane DAF. Immunofluorescent studies revealed that 37 degrees C mediated the redistribution of DAF from a homogeneous pattern into caps. These results show that under the conditions studied DAF is partially internalized and partially released from the PMN membrane to the fluid phase; the latter may contribute to the presence of DAF in body fluids.  相似文献   

14.
Four CR1 variants have been found in the normal population and are designated CR1-A (190,000 daltons), CR1-B (220,000 daltons), CR1-C (160,000 daltons), and CR1-D (250,000 daltons). In the present study, we first developed an improved chromatographic purification scheme for CR1 that does not employ a C3b affinity step. CR1 variants (A, B, and C) were then isolated, and their individual functional activity was assessed. Each possessed similar co-factor activity for I-mediated cleavage of C3(H2O), as well as for the inhibitory activity for fluid phase C3 convertases. These results indicate that, despite relatively large Mr differences, in the purified state these three CR1 variants have similar functional activities. The functional activity of CR1 was also compared with C4bp, H, and decay accelerating factor (DAF) in fluid phase assays designed to assess the inhibition of the C3 convertases and co-factor activity. On a molar basis, CR1 had approximately the same inhibitory activity as C4bp for the classical pathway convertase, and had the same as H for the alternative pathway convertase. These results indicate that CR1 encompasses the functional capabilities of both proteins. They also raise a number of interesting genetic and structural questions in regard to these complement regulatory proteins, because C4bp is thought to have multiple C4b binding domains, whereas H is reported to bind one C3b. DAF was an approximately fourfold better inhibitor of the alternative pathway convertase than CR1 or H, but was a fourfold less efficient inhibitor of the classical pathway convertase than CR1 or C4bp. The effective inhibitory capacity of DAF in these fluid phase assay systems suggests that the DAF substrate specificity is for the convertases. Fluid phase CR1 was twofold less efficient than H in serving as a co-factor for the first cleavage of fluid phase C3b, and hardly mediated the second cleavage. These data are in contrast to the co-factor activity of CR1 on a cell membrane, and provide additional evidence for the local environment being a critical modulator of the function of proteins that regulate the activation of C3.  相似文献   

15.
When membrane-bound human liver alkaline phosphatase was treated with a phosphatidylinositol (PI) phospholipase C obtained from Bacillus cereus, or with the proteases ficin and bromelain, the enzyme released was dimeric. Butanol extraction of the plasma membranes at pH 7.6 yielded a water-soluble, aggregated form that PI phospholipase C could also convert to dimers. When the membrane-bound enzyme was solubilized with a non-ionic detergent (Nonidet P-40), it had the Mr of a tetramer; this, too, was convertible to dimers with PI phospholipase C or a protease. Butanol extraction of whole liver tissue at pH 6.6 and subsequent purification yielded a dimeric enzyme on electrophoresis under nondenaturing conditions, whereas butanol extraction at pH values of 7.6 or above and subsequent purification by immunoaffinity chromatography yielded an enzyme with a native Mr twice that of the dimeric form. This high molecular weight form showed a single Coomassie-stained band (Mr = 83,000) on electrophoresis under denaturing conditions in sodium dodecyl sulfate, as did its PI phospholipase C cleaved product; this Mr was the same as that obtained with the enzyme purified from whole liver using butanol extraction at pH 6.6. These results are highly suggestive of the presence of a butanol-activated endogenous enzyme activity (possibly a phospholipase) that is optimally active at an acidic pH. Inhibition of this activity by maintaining an alkaline pH during extraction and purification results in a tetrameric enzyme. Alkaline phosphatase, whether released by phosphatidylinositol (PI) phospholipase C or protease treatment of intact plasma membranes, or purified in a dimeric form, would not adsorb to a hydrophobic medium. PI phospholipase C treatment of alkaline phosphatase solubilized from plasma membranes by either detergent or butanol at pH 7.6 yielded a dimeric enzyme that did not absorb to the hydrophobic medium, whereas the untreated preparations did. This adsorbed activity was readily released by detergent. Likewise, alkaline phosphatase solubilized from plasma membranes by butanol extraction at pH 7.6 would incorporate into phosphatidylcholine liposomes, whereas the enzyme released from the membranes by PI phospholipase C would not incorporate. The dimeric enzyme purified from a butanol extract of whole liver tissue carried out at pH 6.6 did not incorporate. We conclude that PI phospholipase C converts a hydrophobic tetramer of alkaline phosphatase into hydrophilic dimers through removal of the 1,2-diacylglycerol moiety of phosphatidylinositol. Based on these and others' findings, we devised a model of alkaline phosphatase's conversion into its various forms.  相似文献   

16.
Decay-accelerating factor (DAF) is a 70,000 Mr membrane protein that inhibits the amplification of the complement cascade on cell surfaces. Monoclonal antibodies against different epitopes of the 70,000 Mr DAF (DAF-1) recognize a second band at the position of 140,000 Mr on a Western blot of total red cell ghost proteins or partially pure DAF subjected to electrophoresis under denaturing conditions. Like DAF-1, this polypeptide (DAF-2) has the ability to accelerate decay of the C3 convertase, C4b2a, and to reincorporate into red cell membranes. A population of erythrocytes from patients with paroxysmal nocturnal hemoglobinuria (PNH) lack DAF-1 and also DAF-2. In addition, in some patients' red cells bearing DAF-1 of normal Mr, DAF-2 is 5,000 to 10,000 Mr smaller than normal. The structural basis for these differences in size of DAF and its PNH variants is unknown.  相似文献   

17.
We examined the biochemistry and subcellular source of new formyl peptide chemotactic receptor appearing at the human neutrophil and differentiated HL-60 (d-HL-60) cell surface after stimulation with phorbol myristate acetate (PMA). Formyl peptide receptor was analyzed by affinity labeling with formyl-norleu-leu-phe-norleu-[125I]iodotyr-lys and ethylene glycol bis(succinimidyl succinate) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometric analysis of autoradiographs. PMA, a specific granule secretagogue, increases affinity labeling of formyl peptide receptors on the neutrophil surface by 100%, and on d-HL-60, which lack specific granule markers, by 20%. Papain treatment markedly reduces surface labeling of formyl peptide receptor in both neutrophils and d-HL-60, and results in the appearance of a lower m.w. membrane-bound receptor fragment. PMA stimulation of papain-treated cells increases uncleaved surface receptor on neutrophils by 400%, and on d-HL-60 by only 45%. This newly appearing receptor is the same apparent m.w. (55,000 to 75,000 for neutrophils; 62,000 to 80,000 for d-HL-60) and yields the same papain cleavage product (Mr, 31,000 for neutrophils; Mr, 29,000 for d-HL-60) as receptor on the surface of unstimulated cells. Formyl peptide receptor detected by affinity labeling in neutrophil specific granule-enriched subcellular fractions is identical to receptor found on the surface of unstimulated cells appearing as equal amounts of two isoelectric forms (isoelectric points, 5.8 and 6.2) at Mr 55,000 to 70,000. There is twice as much receptor present in the specific granule-enriched fraction per cell equivalent compared with plasma membrane. Azurophil granules contain trace amounts of receptor. Similar analysis of neutrophils treated with papain before subcellular fractionation shows that papain cleaved receptor fragment is detectable almost exclusively in the plasma membrane-enriched fraction. Most of the affinity-labeled formyl peptide receptor present in specific granule enriched fraction is present in membranes other than plasma membrane or Golgi membrane, because specific granule-enriched fraction contains only a small amount of plasma membrane marker and an amount of Golgi membrane marker equal to that found in plasma membrane-enriched fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We have identified a Mr 80K cell surface protein(s) from adult rat hepatocytes that binds basement membrane components, including collagen IV, heparan sulfate proteoglycan, and laminin. Freshly isolated hepatocytes were cell surface-labeled with 125I using the lactoperoxidase-catalyzed method, and detergent-solubilized membrane proteins were chromatographed on affinity columns prepared with purified basement membrane components. A Mr 80K protein was eluted with 0.15-1 M NaCl from a collagen IV column. Two proteins (Mr 80K and 38K) were eluted from a heparan sulfate proteoglycan column. The larger protein was also eluted from a column made with heparan sulfate side chains. Several proteins (Mr 80K, 67K, 45K, and 32K) bound to an affinity chromatography column made with the laminin A chain-derived synthetic peptide PA22-2, which is active for promoting cell attachment. When fractions eluted from these columns were analyzed by two-dimensional gel electrophoresis, the Mr 80K proteins showed similar patterns with a pI ranging from 8 to 9. The Mr 80K protein(s) may have an important role in the interaction of hepatocytes with basement membrane.  相似文献   

19.
The larval midgut epithelial cell of the silkworm, Bombyx mori, has two forms of alkaline phosphatase and trehalase, soluble and membrane-bound. Alkaline phosphatase and trehalase of the latter form are found in the brush border membrane and the basolateral membrane, respectively. In this work we studied the membrane anchors of these membrane-bound enzymes. Alkaline phosphatase was solubilized by phosphatidyl-inositol-specific phospholipase C, but not by papain. Conversely, trehalase was released from the membrane by papain, but not by phosphatidylinositol-specific phospholipase C. Both enzymes were solubilized in an amphiphilic form with 0.5% Triton X-100 plus 0.5% sodium deoxycholate (pH 7.0). The detergent-solubilized alkaline phosphatase and trehalase were converted to hydrophilic form on incubation with phosphatidylinositol-specific phospholipase C and papain, respectively. The effects of papain on solubilization and conversion of trehalase were completely inhibited by leupeptin. These results suggest that, in the silkworm larvae, alkaline phosphatase is anchored in the brush-border membrane via a glycosyl-phosphatidylinositol, while trehalase is associated with the basolateral membrane through a hydrophobic segment of the polypeptide.  相似文献   

20.
H T He  J Barbet  J C Chaix    C Goridis 《The EMBO journal》1986,5(10):2489-2494
The rodent neural cell adhesion molecule (NCAM) consists of three glycoproteins with Mr of 180,000, 140,000 and 120,000. The Mr 120,000 protein (NCAM-120) has been shown to exist in membrane-bound and soluble forms but the nature of its membrane association and release has remained obscure. We show here that phosphatidylinositol-specific phospholipase C (PI-PLC), but not a phospholipase C of different specificity, releases a substantial proportion of NCAM-120 from brain membranes and solubilizes almost quantitatively NCAM-120 present at the surface of C6 astroglial cells. The PI-PLC effect was highly selective since only one other protein species was detectably released from C6 cells. These results suggest that NCAM-120 is held in the membrane by covalently bound phosphatidylinositol or a closely related lipid in a way similar to several other surface proteins from eukaryotic cells. The presence of NCAM in a form which can be released from the cell surface by a highly selective mechanism raises additional possibilities for modulation and control of cell--cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号