首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Theory suggests that sex‐specific selection can facilitate adaptation in sexually reproducing populations. However, sexual conflict theory and recent experiments indicate that sex‐specific selection is potentially costly due to sexual antagonism: alleles harmful to one sex can accumulate within a population because they are favored in the other sex. Whether sex‐specific selection provides a net fitness benefit or cost depends, in part, on the relative frequency and strength of sexually concordant versus sexually antagonistic selection throughout a species’ genome. Here, we model the net fitness consequences of sex‐specific selection while explicitly considering both sexually concordant and sexually antagonistic selection. The model shows that, even when sexual antagonism is rare, the fitness costs that it imposes will generally overwhelm fitness benefits of sexually concordant selection. Furthermore, the cost of sexual antagonism is, at best, only partially resolved by the evolution of sex‐limited gene expression. To evaluate the key parameters of the model, we analyze an extensive dataset of sex‐specific selection gradients from wild populations, along with data from the experimental evolution literature. The model and data imply that sex‐specific selection may likely impose a net cost on sexually reproducing species, although additional research will be required to confirm this conclusion.  相似文献   

2.
Evolutionary theory predicts that sexually antagonistic loci will be preferentially sex-linked, and this association can be empirically testes with data on sex-biased gene expression with the assumption that sex-biased gene expression represents the resolution of past sexual antagonism. However, incomplete dosage compensating mechanisms and meiotic sex chromosome inactivation have hampered efforts to connect expression data to theoretical predictions regarding the genomic distribution of sexually antagonistic loci in a variety of animals. Here we use data on the underlying regulatory mechanism that produce expression sex-bias to test the genomic distribution of sexually antagonistic genes in chicken. Using this approach, which is free from problems associated with the lack of dosage compensation in birds, we show that female-detriment genes are significantly overrepresented on the Z chromosome, and female-benefit genes underrepresented. By contrast, male-effect genes show no over- or underrepresentation on the Z chromosome. These data are consistent with a dominant mode of inheritance for sexually antagonistic genes, in which male-benefit coding mutations are more likely to be fixed on the Z due to stronger male-specific selective pressures. After fixation of male-benefit alleles, regulatory changes in females evolve to minimize antagonism by reducing female expression.  相似文献   

3.
Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism.  相似文献   

4.
The aim of this review is to consider variation in mating p among females. We define mating p as the sensory and behavioural properties that influence the propensity of individuals to mate with certain phenotypes. Two properties of mating p can be distinguished: (i) ‘preference functions’–the order with which an individual ranks prospective mates and (2)‘choosiness’ -the effort an individual is prepared to invest in mate assessment. Patterns of mate choices can be altered by changing the costs of choosiness without altering the preference function. We discuss why it is important to study variation in female mating behaviour and identify five main areas of interest: Variation in mating p and costs of choosiness could (i) influence the rate and direction of evolution by sexual selection, (2) provide information about the evolutionary history of female p, (3) help explain inter-specific differences in the evolution of secondary sexual characteristics, (4) provide information about the level of benefits gained from mate choice, (5) provide information about the underlying mechanisms of mate choice. Variation in mate choice could be due to variability in preference functions, degree of choosiness, or both, and may arise due to genetic differences, developmental trajectories or proximate environmental factors. We review the evidence for genetic variation from genetic studies of heritability and also from data on the repeatability of mate-choice decisions (which can provide information about the upper limits to heritability). There can be problems in interpreting patterns of mate choice in terms of variation in mating p and we illustrate two main points. First, some factors can lead to mate choice patterns that mimic heritable variation in p and secondly other factors may obscure heritable p. These factors are divided into three overlapping classes, environmental, social and the effect of the female phenotype. The environmental factors discussed include predation risk and the costs of sampling; the social factors discussed include the effect of male–male interactions as well as female competition. We review the literature which presents data on how females sample males and discuss the number of cues females use. We conclude that sexual-selection studies have paid far less attention to variation among females than to variation among males, and that there is still much to learn about how females choose males and why different females make different choices. We suggest a number of possible lines for future research.  相似文献   

5.
Investigating the mechanisms underlying female mate choice is important for sexual-selection theory, but also for population-genetic studies, because distinctive breeding strategies affect differently the dynamics of gene diversity within populations. Using field-monitoring, genetic-assignment, and laboratory-rearing methods, we investigated chorus attendance, mating success and offspring fitness in a population of lek-breeding tree-frogs ( Hyla arborea ) to test whether female choice is driven by good genes or complementary genes. Chorus attendance explained ∼50% of the variance in male mating success, but did not correlate with offspring fitness. By contrast, offspring body mass and growth rate correlated with male attractiveness, measured as the number of matings obtained per night of calling. Genetic similarity between mating partners did not depart from random, and did not affect offspring fitness. We conclude that females are able to choose good partners under natural settings and obtain benefits from the good genes, rather than compatible genes, their offspring inherit. This heritability of fitness is likely to reduce effective population sizes below values previously estimated.  相似文献   

6.
The correlated evolution of genitalia between sexes has been demonstrated in many taxa. However, it remains unclear whether female rather than male genitalia can play a key role in the correlated evolution of male and female genitalia. We conducted an extensive cross‐population analysis of the divergence patterns of genital structures, weights of whole genital organs, and the bodies of both sexes, and male genital length in a group of xystodesmid millipedes showing diverse genital morphologies. We demonstrate that the correlated evolution of male and female genitalia toward exaggerated states has occurred in the millipedes, which have evolved novel traits in both males (forceps‐like gonopods) and females (retractable bellows). Enlargement and elongation of forceps‐like gonopods may be advantageous in sperm competition, whereas enlargement and elongation of the bellows may facilitate acceptance/rejection of insemination for ensuring the female's fitness. These male and female genital parts have affected the correlated evolution in the opposite sex, resulting in diversification and exaggeration of genital morphology. Our study suggests that evolutionary novel traits in not only males but also in females could play an important role in the correlated evolution of genitalia between the sexes.  相似文献   

7.
Females of all species belonging to the family Drosophilidae have two kinds of sperm-storage organs: paired spherical spermathecae and a single elongate tubular seminal receptacle. We examined 113 species belonging to the genus Drosophila and closely allied genera and describe variation in female sperm-storage organ use and morphology. The macroevolutionary pattern of organ dysfunction and morphological divergence suggests that ancestrally both kinds of organs stored sperm. Loss of use of the spermathecae has evolved at least 13 times; evolutionary regain of spermathecal function has rarely if ever occurred. Loss of use of the seminal receptacle has likely occurred only once; in this case, all descendant species possess unusually elaborate spermathecae. Data further indicate that the seminal receptacle is the primary sperm-storage organ in Drosophila. This organ exhibits a pattern of strong correlated evolution with the length of sperm. The evolution of multiple kinds of female sperm-storage organs and the rapidly divergent and correlated evolution of sperm and female reproductive tract morphology are discussed.  相似文献   

8.
植物雌雄株性别鉴定研究方法的评价   总被引:11,自引:1,他引:10  
综述了近50年来国内外关于植物雌雄株性别鉴定各种常用方法的研究新进展,并就各种方法的优缺点加以讨论,同时提出建议。  相似文献   

9.
Male courtship behavior is generally thought to function prior to copulation, as an inducement to the female to allow the male to copulate with her; this study indicates however, that male courtship during and following copulation (“copulatory courtship”) is common in insects and spiders (81% of 131 species in 102 genera and 49 families, mostly Coleoptera, Hemiptera, Diptera, and Araneioidea). Copulatory courtship is apparently evolutionarily labile, as expected if it is under sexual selection; intrageneric variation occurred in all 17 genera in which more than one species was observed. In 81% of 94 species with copulatory courtship, the male abandoned the female soon after copulation ended; thus, copulatory courtship appears not to function generally to induce acceptance of further copulatory attempts. The most likely explanation for copulatory courtship is that it represents attempts by males to influence cryptic female choice. This suggests that an aspect of sexual selection by female choice not considered by Darwin may be more important than previously appreciated and that the common practice in evolutionary studies of measuring male reproductive success by counting numbers of copulations may sometimes be misleading because of cryptic female choice during and after copulation.  相似文献   

10.
Sex chromosomes undergo rapid turnover in certain taxonomic groups. One of the mechanisms of sex chromosome turnover involves fusions between sex chromosomes and autosomes. Sexual antagonism, heterozygote advantage, and genetic drift have been proposed as the drivers for the fixation of this evolutionary event. However, all empirical patterns of the prevalence of multiple sex chromosome systems across different taxa cannot be simply explained by these three mechanisms. In this study, we propose that female meiotic drive may contribute to the evolution of neo‐sex chromosomes. The results of this study showed that in mammals, the XY1Y2 sex chromosome system is more prevalent in species with karyotypes of more biarmed chromosomes, whereas the X1X2Y sex chromosome system is more prevalent in species with predominantly acrocentric chromosomes. In species where biarmed chromosomes are favored by female meiotic drive, X‐autosome fusions (XY1Y2 sex chromosome system) will be also favored by female meiotic drive. In contrast, in species with more acrocentric chromosomes, Y‐autosome fusions (X1X2Y sex chromosome system) will be favored just because of the biased mutation rate toward chromosomal fusions. Further consideration should be given to female meiotic drive as a mechanism in the fixation of neo‐sex chromosomes.  相似文献   

11.
We examined sexual selection by Drosophila littoralis, D. montana, and D. ezoana females on male courtship sounds to determine whether the females use absolute or relative criteria when choosing their mates. Behavior of the females was observed, when they were courted by a single male producing normal sounds, or by a single wing-manipulated male producing abnormal sounds; and when they were courted by one or both of these males in a choice situation. The females usually accepted short-winged (but not wingless) males producing abnormal sounds, if they had no alternatives. However, if they heard the sound produced by a normal male, they rejected the deficient male. Drosophila littoralis and D. ezoana females selected between two wing-manipulated males with different wing areas. Our results suggest that the females choose their mates on the basis of relative criteria if the signals emitted by the courting males are within the range of acceptable cues.  相似文献   

12.
An intersexual conflict arises when males and females differ in their reproductive interests. Although experimental studies have shown that females often mate with dominant males, it may not always be in the interest of a female to do so. Here we investigated the impact of male dominance on female mate choice and offspring growth and survival in the rose bitterling ( Rhodeus ocellatus ), a freshwater fish with a resource-based mating system. Three experimental mating trials were conducted using males of known dominance rank, but with different levels of constraint on male behavior. Thus, females were able to choose among; (1) males that were isolated from each other; (2) males that could see and smell each other, but could not directly interact; (3) males that could interact fully. Using a combination of behavioral observation and parentage analyses it was shown that female preferences did not correspond with male dominance and that male aggression and dominance constrained female mate choice, resulting in a potential intersexual conflict. The survival of offspring to independence was significantly correlated with female mate preferences, but not with male dominance. A lack of strong congruence in female preference for males suggested a role for parental haplotype compatibility in mate choice.  相似文献   

13.
The house finch (Carpodacus mexicanus) is a sexually dichromatic passerine in which males display colorful plumage and females are generally drab brown. Some females, however, have a subdued version of the same pattern of ornamental coloration seen in males. In previous research, I found that female house finches use male coloration as an important criterion when choosing mates and that the plumage brightness of males is a reliable indicator of male nest attentiveness. Male house finches invest substantially in the care of young and, like females, stand to gain by choosing high-quality mates. I therefore hypothesized that a female's plumage brightness might be correlated with her quality and be the basis for male mate choice. In laboratory mate choice experiments, male house finches showed a significant preference for the most brightly plumaged females presented. Observations of a wild population of house finches, however, suggest that female age is the primary criterion in male choice and that female plumage coloration is a secondary criterion. In addition, yearling females tended to have more brightly colored plumage than older females, and there was no relationship between female plumage coloration and overwinter survival, reproductive success, or condition. These observations fail to support the idea that female plumage coloration is an indicator of individual quality. Male mate choice for brightly plumaged females may have evolved as a correlated response to selection on females to choose brightly colored males.  相似文献   

14.
Claw size of male fiddler crabs, Uca perplexa appears to be a target of female choice that increases the likelihood a female will initially approach a male. Here we show that a behavioral display trait, the maximum height that the tip of the claw reaches during a courtship wave, is a strong correlate of the subsequent likelihood that a female will visit a male's burrow (which is a prerequisite for a burrow mating). We experimentally manipulated claw mass, to test whether there is a trade-off between claw mass and wave height. Males with a metal weight added to their claw showed a large reduction in wave height, whereas control males (plastic added) showed no net change in wave height. There is therefore a trade-off between these two sexually selected traits (claw size and wave display). More importantly, the greater the initial wave height the smaller the subsequent decline in wave height. Assuming that variation in wave height is an index of quality, this variation in the cost-benefit trade-off is consistent with the requirements of a signaling system that conforms to the handicap principle when fitness is the multiplicative product of different fitness components. We conclude by discussing the ongoing difficulties in testing the handicap principle.  相似文献   

15.
Sex‐biased genes—genes that are differentially expressed within males and females—are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male‐ and female‐biased genes. These linkage patterns are often gene‐ and lineage‐dependent, differing between functional genetic categories and between species. Although sex‐specific selection is often hypothesized to shape the evolution of sex‐linked and autosomal gene content, population genetics theory has yet to account for many of the gene‐ and lineage‐specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome‐wide empirical studies, we extend previous population genetics theory of sex‐specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex‐specific selection and sex‐specific recombination rates can generate, and are compatible with, the gene‐ and species‐specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits.  相似文献   

16.
A female's mate preference is a potentially complex function relating variation in multiple male phenotypes with her probability of accepting individual males as a mate. Estimating the quantitative genetic basis preference functions within a population is empirically challenging yet key to understanding preference evolution. We employed a recently described approach that uses random‐coefficient mixed models in the analysis of function‐valued traits. Using a half‐sibling breeding design in a laboratory‐adapted Drosophila serrata population, we estimated the genetic (co)variance function of female preference for male sexual displays composed of nine contact pheromones. The breeding design was performed across two environments: the food to which the population was well adapted and a novel food that reduced average female productivity by 35%. Significant genetic variance in female preference was detected and the majority (64.2%) was attributable to a single genetic dimension (eigenfunction), suggesting that preferences for different pheromones are not genetically independent. The second eigenfunction, accounting for 24% of the total genetic variance, approached significance in a conservative test, suggesting the existence of a second, independent genetic dimension. There was no evidence that the genetic basis of female preference differed between the two environments, suggesting the absence of genotype‐by‐environment interactions and hence a lack of condition‐dependent preference expression.  相似文献   

17.
母兔配种后10小时血清中若干生理指标与子代性比的相关   总被引:1,自引:0,他引:1  
测定日本大耳白兔母兔配种后10小时血清中的10项生理指标,并与母兔所产每窝仔兔的性比(雄性个体所占比率)进行对应分析(窝仔数<6的数据未参与此项分析)。结果表明:母兔血清中FSH、T(睾酮)、 Na+和M2+的浓度在高、低两个性比组间有显著差异, T3(三碘甲状腺原氨酸)的差异接近显著水平(P<0.1);并且,FSH和T3与子代性比里显著负相关(r分别为-0.50和-0.46),Mg2+与子代性比里显著正相关(r=0.39);同时,Mg2+/Ca2+、Mg2+×Na+、Mg2+×K+和T3×FSH与子代性比的相关分别为0.40、0.43、0.39和-0.53(P<0.05)。  相似文献   

18.
Postcopulatory sexual selection is credited with driving rapid evolutionary diversification of reproductive traits and the formation of reproductive isolating barriers between species. This judgment, however, has largely been inferred rather than demonstrated due to general lack of knowledge about processes and traits underlying variation in competitive fertilization success. Here, we resolved processes determining sperm fate in twice‐mated females, using transgenic Drosophila simulans and Drosophila mauritiana populations with fluorescently labeled sperm heads. Comparisons among these two species and Drosophila melanogaster revealed a shared motif in the mechanisms of sperm precedence, with postcopulatory sexual selection potentially occurring during any of the three discrete stages: (1) insemination; (2) sperm storage; and (3) sperm use for fertilization, and involving four distinct phenomena: (1) sperm transfer; (2) sperm displacement; (3) sperm ejection; and (4) sperm selection for fertilizations. Yet, underlying the qualitative similarities were significant quantitative differences in nearly every relevant character and process. We evaluate these species differences in light of concurrent investigations of within‐population variation in competitive fertilization success and postmating/prezygotic reproductive isolation in hybrid matings between species to forge an understanding of the relationship between microevolutionary processes and macroevolutionary patterns as pertains to postcopulatory sexual selection in this group.  相似文献   

19.
A model is used to study quantitatively the impact of a good genes process and direct natural selection on the evolution of a mating preference. The expression of a male display trait is proportional to genetic quality, which is determined by the number of deleterious mutations a male carries throughout his genome. Genetic variances and covariances, including the covariance between the preference and male trait that drives the good genes process, are allowed to evolve under an infinitesimal model. Results suggest that the good genes process generates only weak indirect selection on preferences, with an effective selection intensity of a few percent or less. If preferences are subject to direct natural selection of the intensity observed for other characters, the good genes process alone is not expected to exaggerate the male trait by more than a few phenotypic standard deviations, contrary to what is observed in highly sexually selected species. Good genes can, however, cause substantial exaggeration if preference genes are nearly selectively neutral. Alternatively, direct selection on preference genes, acting on mating behavior itself or on the genes' pleiotropic effects, can cause mating preferences and male display traits to be exaggerated by any degree. Direct selection of preference genes may therefore play an important role in species that show extreme sexual selection.  相似文献   

20.
Good genes models of mate choice predict additive genetic benefits of choice whereas the compatibility hypothesis predicts nonadditive fitness benefits. Here the Chinese rose bitterling, Rhodeus ocellatus, a freshwater fish with a resource‐based mating system, was used to separate additive and nonadditive genetic benefits of female mate choice. A sequential blocked mating design was used to test female mate preferences, and a cross‐classified breeding design coupled with in vitro fertilizations for fitness benefits of mate choice. In addition, the offspring produced by the pairing of preferred and nonpreferred males were reared to maturity and their fitness traits were compared. Finally, the MHC DAB1 gene was typed and male MHC genotypes were correlated with female mate choice. Females showed significant mate preferences but preferences were not congruent among females. There was a significant interaction of male and female genotype on offspring survival, rate of development, growth rate, and body size. No significant male additive effects on offspring fitness were observed. Female mate preferences corresponded with male genetic compatibility, which correlated with MHC dissimilarity. It is proposed that in the rose bitterling genetic compatibility is the mechanism by which females obtain a fitness benefit through mate choice and that male MHC dissimilarity, likely mediated by odor cues, indicates genetic compatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号