首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
枯草芽胞杆菌作为一种遗传背景清晰、基因编辑成熟的革兰氏阳性菌,是多种重要工业酶的生产宿主。随着转录组、蛋白质组、代谢组等多组学测序和分析技术的发展,通过合理设计简化枯草芽胞杆菌基因组,减少细胞内冗余的调控和代谢网络,使得细胞更精简且便于控制,展现出了枯草芽胞杆菌作为异源酶表达宿主细胞的应用潜力。本文简要综述了枯草芽胞杆菌基因组删减的研究进展,归纳了必需基因的确定方法,重点介绍了枯草芽胞杆菌通过删减基因组提升异源酶表达的研究进展及删减策略,充分展示了枯草芽胞杆菌基因组删减在构建异源酶表达底盘细胞中的重要作用。  相似文献   

2.
3.
The DNA fragment from bacitracin-producing Bacillus licheniformis strain is cloned on pMX39 vector plasmid in Bacillus subtilis cells. Bacillus subtilis cells carrying the cloned fragment inhibit the growth of bacitracin-sensitive tester strain. The observed inhibition of growth is due to the production by Bacillus subtilis of bacteriocin substance that is identified as bacitracin by TLC-chromatography. In contrast to the data published earlier it is shown that Bacillus subtilis can in fact produce the small amounts of bacitracin. Introduction of the cloned Bacillus licheniformis DNA into Bacillus subtilis cells stimulates this bacitracin production. The restriction site map of the Bacillus licheniformis chromosomal region bearing the cloned fragment is constructed.  相似文献   

4.
5.
Bacillus subtilis F29-3 is an antagonistic bacterium against a wide range of fungal species. In order to determine the effect of chitinase on the antifungal activity of B. subtilis F29-3, a 2.4-kb DNA fragment containing the chiA gene of Bacillus circulans WL-12 was ligated into a shuttle vector pHY300PLK and transformed into B. subtilis F29-3. A bioassay conducted on the culture supernatant showed that, in comparison to the B. subtilis control strain, B. subtilis F29-3 expressing the chiA gene exhibited a greater inhibition of spore germination of Botrytis elliptica, indicating that chitinase could enhance the antifungal function conferred by B. subtilis F29-3.  相似文献   

6.
The results of an investigation involving 45 strains of Bacillus subtilis , 31 strains of B. licheniformis and 29 strains of B. pumilus are reported. The hitherto recognized varieties B. subtilis var. niger and B. subtilis var. aterrimus appear to be only variants of B. subtilis. For a rapid differentiation of B. licheniformis from B. subtilis two tests are recommended—reduction of nitrites and splitting of arginine. The present tests, reduction of nitrate and hydrolysis of starch, are the most suitable for distinguishing between B. pumilus and B. subtilis.  相似文献   

7.
Bacillus subtilis B3 was found to produce lipopeptides iturins and fengycin that have activity against several plant pathogens such as Fusarium graminearum, Rhizoctonia solani, Rhizoctonia cerealis, and Pyricularia grisea. A 3642-bp genomic region of B. subtilis B3 comprising srfDB3, aspB3, lpaB3, and yczEB3 genes that resulted in biosynthesis of surfactin in B. subtilis 168 was cloned, sequenced, and characterized. Among them, the srfDB3 gene encodes thioesterase, which is required for biosynthesis of surfactin in B. subtilis; the aspB3 gene encodes a putative aspartate aminotransferase-like protein; the lpaB3 encodes phosphopantetheinyl transferase, which shows high identity to the product of lpa-14 gene regulating the biosynthesis of iturin A and surfactin in B. subtilis RB14; the yczEB3 encodes a YczE-like protein with significant similarities in signal peptide and part of the ABC transport system. The genetic regions between the srfD gene and lpa gene from B. subtilis B3 and B. subtilis A13, which produces iturin A, contain an approximate 1-kb nucleotide fragment encoding an aspartate aminotransferase-like protein; however, the relevant regions from B. subtilis 168 and B. subtilis ATCC21332 producing surfactin comprise an approximately 4-kb nucleotide fragment encoding four unknown proteins. There is 73% identity between the Lpa family and the Sfp family, although both are highly conserved.  相似文献   

8.
9.
The 210 degrees region of Bacillus subtilis DNA containing the rib operon and genes for the first (dapA) and last (lysA) steps of lysine biosynthesis was cloned. PstI fragments of B. subtilis m.m. 4.7 MD DNA containing the lys and the proximal part of rib operon were isolated from different B. subtilis strains (SB25 and SHgW) and shown to have the same restriction and genetic maps. The restriction mapping of EcoRI fragment of B. subtilis m.m. 6.3 MD DNA containing the rib operon has been carried out.  相似文献   

10.
Beta-glucanase gene from Bacillus subtilis 168 has been mapped by bacteriophage pBS1 transduction technique between sacA and purA genes. The stimulating effect of pleiotropic mutations pap, amyB and sacUh on beta-glucanase production in Bacillus subtilis and Bacillus amyloliquefaciens has been described. Beta-glucanase gene from Bacillus amyloliquefaciens has been cloned ona Charon 4A vector. Expression of the gene in E. coli cells depended on the orientation of the cloned DNA on a pBR322 vector plasmid. Maximal enzymatic activity was registered in periplasm. Beta-glucanase gene was recloned in Bacillus subtilis cells. Bacillus subtilis strain, harbouring pBG1, produces 500 times more beta-glucanase as compared with the wild type strain of Bacillus subtilis.  相似文献   

11.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   

12.
The Escherichia coli replication terminator TerB was inserted in its two alternate orientations into a Bacillus subtilis fork-arrest assay plasmid. After transferring these new plasmids into B. subtilis, which could overproduce the E. coli terminator protein Tus, it was shown that the E. coli Tus-TerB complex could cause polar replication fork arrest, albeit at a very low level, in B. subtilis. A new B. subtilis-E. coli shuttle plasmid was designed to allow the insertion of either the Terl (B. subtilis) or TerB (E. coli) terminator at the same site and in the active orientation in relation to the approaching replication fork generated in either organism. Fork-arrest assays for both terminator-containing plasmids replicating in both organisms which also produced saturating levels of either the B. subtilis terminator protein (RTP) or Tus were performed. The efficiency of the Tus-TerB complex in causing fork arrest was much higher in E. coli than in B. subtilis. The efficiency of the B. subtilis RTP-Terl complex was higher in B. subtilis than in E. coli, but the effect was significantly less. Evidently a specificity feature in E. coli operates to enhance appreciably the fork-arrest efficiency of a Tus-Ter complex. The specificity effect is of less significance for an RTP-Ter complex functioning in B. subtilis.  相似文献   

13.
B Vosman  J Kooistra  J Olijve  G Venema 《Gene》1987,52(2-3):175-183
With the aim of cloning genes involved in transformation of Bacillus subtilis, a set of transformation-deficient mutants was isolated by means of insertional mutagenesis with plasmid pHV60 (Vosman et al., 1986). Analysis of these mutants showed that those mapping in the aroI region lacked the DNA-entry nuclease activity. Plasmid pHV60 derivatives, containing flanking chromosomal DNA fragments, were isolated from these mutants and were used to screen a library of B. subtilis chromosomal DNA in phage lambda EMBL4. In Escherichia coli lysates, prepared with the phages that hybridized to the pHV60-based probe, a prominent nuclease activity could be detected. The nuclease encoded by the phage DNA had the same Mr as the B. subtilis DNA-entry nuclease and its activity was strongly stimulated by Mn2+, which is also characteristic for the B. subtilis DNA-entry nuclease. From these results it was concluded that the gene specifying the B. subtilis DNA-entry nuclease had been cloned. It was shown that the nuclease activity was specified by a 700-bp EcoRI-PstI fragment.  相似文献   

14.
15.
The chemoreceptor-CheA kinase-CheW coupling protein complex, with ancillary associated proteins, is at the heart of chemotactic signal transduction in bacteria. The goal of this work was to determine the cellular stoichiometry of the chemotaxis signaling proteins in Bacillus subtilis. Quantitative immunoblotting was used to determine the total number of chemotaxis proteins in a single cell of B. subtilis. Significantly higher levels of chemoreceptors and much lower levels of CheA kinase were measured in B. subtilis than in Escherichia coli. The resulting cellular ratio of chemoreceptor dimers per CheA dimer in B. subtilis is roughly 23.0 ± 4.5 compared to 3.4 ± 0.8 receptor dimers per CheA dimer observed in E. coli, but the ratios of the coupling protein CheW to the CheA dimer are nearly identical in the two organisms. The ratios of CheB to CheR in B. subtilis are also very similar, although the overall levels of modification enzymes are higher. When the potential binding partners of CheD are deleted, the levels of CheD drop significantly. This finding suggests that B. subtilis selectively degrades excess chemotaxis proteins to maintain optimum ratios. Finally, the two cytoplasmic receptors were observed to localize among the other receptors at the cell poles and appear to participate in the chemoreceptor complex. These results suggest that there are many novel features of B. subtilis chemotaxis compared with the mechanism in E. coli, but they are built on a common core.  相似文献   

16.
Translocation, processing and secretion of YvaY, a Bacillus subtilis protein of unknown function, were characterised both in B. subtilis and in Escherichia coli. In its natural host B. subtilis, YvaY was transiently synthesised at the end of the exponential growth phase. It was efficiently secreted into the culture supernatant in spite of a calculated membrane spanning domain in the mature part of the protein. In E. coli, despite the high conservation of Sec-dependent transport components, processing of preYvaY was strongly impaired. To uncover which elements of E. coli and B. subtilis translocation systems are responsible for the observed substrate specificity, components of the B. subtilis Sec-system were co-expressed besides yvaY in E. coli. Expression of B. subtilis secA or secYEG genes did not affect processing, but expression of B. subtilis signal peptidase genes significantly enhanced processing of preYvaY in E. coli. While the major signal peptidases SipS or SipT had a strong stimulatory effect on preYvaY processing, the minor signal peptidases SipU, SipV or SipW had a far less stimulatory effect in E. coli. These results reveal that targeting and translocation of preYvaY is mediated by the E. coli Sec proteins but processing of preYvaY is not performed by E. coli signal peptidase LepB. Thus, differences in substrate specificities of E. coli LepB and the B. subtilis Sip proteins provide the bottleneck for export of YvaY in E. coli. Significant slower processing of preYvaY in absence of SecB indicated that SecB mediates targeting of the B. subtilis precursor.  相似文献   

17.
18.
Genetic map of the Bacillus stearothermophilus NUB36 chromosome.   总被引:2,自引:2,他引:0       下载免费PDF全文
A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus stearothermophilus and Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyrA-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes in Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis.  相似文献   

19.
The Bacillus subtilis cell wall binding protein, CwbA, stimulated the cell wall lytic activities of the B. subtilis and B. licheniformis autolysins (CwlA and CwlM, respectively) in addition to that of the major B. subtilis autolysin (CwlB). Even though the substrate for the enzyme reaction was changed from B. subtilis cell wall containing a teichoic acid to Micrococcus luteus cell wall containing a teichuronic acid, the stimulatory effect of CwbA on CwlA activity was observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号