首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal cell carcinoma (RCC) is a lethal urinary malignancy. Circular RNAs (circRNAs) contribute to the malignant phenotype and progression of several types of human cancers, including RCC. In this study, we identified relatively low hsa_circ_0060927 (circCYP24A1) expression in RCC tissue through high-throughput sequencing and RT–qPCR. Fluorescence in situ hybridization (FISH) was used to validate the expression and subcellular localization of circCYP24A1 in RCC tissues. CCK-8, Transwell, EdU, and wound-healing assays indicated that circCYP24A1 overexpression inhibited the proliferation, invasion, and migration of RCC cells. Dual-luciferase reporter, RNA immunoprecipitation (RIP), FISH, and RNA-pulldown assays verified that circCYP24A1 inhibited RCC progression by sponging miR-421, thus inducing CMTM-4 expression. Xenograft assays and metastasis models further indicated that circCYP24A1 significantly inhibited the metastasis and proliferation of RCC cells in vivo. Taken together, circCYP24A1 is a prognosis-related circRNA in RCC that functions through the circCYP24A1/miR-421/CMTM-4 axis to modulate RCC progression.Subject terms: Renal cell carcinoma, Cancer metabolism  相似文献   

2.
3.
4.
Ovarian cancer is a lethal gynaecologic malignancy with poor diagnosis and prognosis. The long non-coding RNA plasmacytoma variant translocation1 (PVT1) and argonaute 1 (AGO1) are associated with carcinogenesis and chemoresistance; however, the relationship between PVT1 and AGO1 and the downstream mechanisms in ovarian cancer remains poorly known. PVT1 and AGO1 expression was assessed through RT-qPCR and Western blotting in both human tissues and cell lines. The viability and proliferation of ovarian cancer cells were determined by CCK-8 assay and TUNEL assay in vitro and immunohistochemistry in vivo. Cell invasion and migration were investigated through transwell and wound-healing assays. The roles and mechanisms of AGO1 on cell functions were further probed via gain- and loss-of-function analysis. We reveal that PVT1 expression was significantly increased in ovarian cancer tissues which is associated with advanced FIGO stage, lymph-node metastasis, poor survival rate, and high expression of AGO1. PVT1 or AGO1 knockdown significantly reduced the cell viability and increased the cell apoptosis and inhibited ovarian tumour growth and proliferation. Furthermore, we discovered that PVT1 up-regulated the expression of AGO1 and thus regulated the transforming growth factor-β (TGF-β) pathway to promote ovarian cancer progression through sponging miR-148a-3p. Additionally, the activation of ERK1/2, smad2 and smad4 is observed to be related to the PVT1/miR-148a-3p/AGO1/TGF-β pathway-induced cascades. Taken together, the present study reveals that PVT1/miR-148a/AGO1 axis plays an important role in the progression of ovarian cancer and emphasize the potential as a target of value for ovarian cancer therapy.  相似文献   

5.
Hypopharyngeal squamous cell carcinoma (HSCC) accounts 95% of hypopharyngeal cancer, which is characterized by high early metastasis rate and poor prognosis. It is reported that circular RNA is involved in the occurrence and development of cancer; however, the role of circRNA in hypopharyngeal cancer has little been investigated. We performed hypopharyngeal carcinoma circRNA microarray and qRT-PCR verification. The results showed circ_0058106 expression level was significantly upregulated in tumor tissues than in corresponding normal tissues. We found that circ_0058106 upregulation promoted proliferation, migration and invasion of HSCC cells, while knockdown of circ_0058106 inhibited proliferation, migration and invasion of HSCC cells both in vitro and in vivo. Bioinformatics predicted circ_0058106 may interact with miR-185-3p. We verified circ_0058106 directly bound miR-185-3p and downregulated miR-185-3p expression by using dual-luciferase reporter assay and qRT-PCR. Moreover, we proved circ_0058106 promoted HSCC cells tumorigenesis and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway via miR-185-3p. In conclusion, our findings firstly confirmed the carcinogenic effect of circ_0058106 in promoting HSCC cells tumorigenesis, metastasis, invasion and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway through sponging miR-185-3p, indicating that circ_0058106 may be a new therapeutic target and prognostic marker for HSCC.Subject terms: Head and neck cancer, Head and neck cancer  相似文献   

6.
Bladder cancer remains a leading cause of cancer-related death because of its distant metastasis and high recurrence rates. Deregulation of circular RNAs (circRNAs) can act either as tumor suppressors or oncogenes to control cell proliferation, migration, and metastasis. The role of circMTO1 in bladder cancer remain unknown. In this study, we investigated whether circMTO1 could use as a biomarker and therapeutic target for bladder cancer treatment. We first demonstrated that circMTO1 was an important circRNA frequently downregulated in bladder cancer tissue, and lower circMTO1 levels were positively correlated with bladder cancer patients' metastasis and poorer survival. Ectopic expression of circMTO1 in bladder cancer cells inhibited cell's epithelial-to-mesenchymal transition (EMT) and metastasis. In addition, we also revealed that circMTO1 was able to sponge miR-221 and overexpression of circMTO1 negatively regulated the E-cadherin/N-cadherin pathway to inhibit bladder cancer cells' EMT by competing for miR-221. In conclusion, our findings provide comprehensive evidences that circMTO1 is a prognostic biomarker in bladder cancer and suggest that circMTO1 may function as a novel therapeutic target in human bladder cancer.  相似文献   

7.
8.
9.
10.
11.
Circular RNAs (circRNAs) play critical roles in tumorigenesis and the progression of various cancers. We previously identified a novel upregulated circRNA, circBCBM1 (hsa_circ_0001944), in the context of breast cancer brain metastasis. However, the potential biological function and molecular mechanism of circBCBM1 in breast cancer brain metastasis remain largely unknown. In this study, we confirmed that circBCBM1 was a stable and cytoplasmic circRNA. Functionally, circBCBM1 promoted the proliferation and migration of 231-BR cells in vitro and growth and brain metastasis in vivo. Mechanistically, circBCBM1 acted as an endogenous miR-125a sponge to inhibit miR-125a activity, resulting in the upregulation of BRD4 (bromodomain containing 4) and subsequent upregulation of MMP9 (matrix metallopeptidase 9) through Sonic hedgehog (SHH) signaling pathway. Importantly, circBCBM1 was markedly upregulated in the breast cancer brain metastasis cells and clinical tissue and plasma samples; besides, circBCBM1 overexpression in primary cancerous tissues was associated with shorter brain metastasis-free survival (BMFS) of breast cancer patients. These findings indicate that circBCBM1 is involved in breast cancer brain metastasis via circBCBM1/miR-125a/BRD4 axis. CircBCBM1 may serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for breast cancer brain metastasis.  相似文献   

12.
13.
14.
BackgroundBreast cancer is the most common malignancy and has been considered as a leading cause of cancer death in women. Exploring the mechanism of breast cancer metastasis is extremely important for seeking novel therapeutic strategies and improving prognosis.MethodsClinical specimens and pathological characteristics were collected for evaluating the expression of forkhead box class O 3a (FOXO3a) and twist-related protein 1 (TWIST-1) in breast cancer tissues. CCK-8 assay was used to analyze cell proliferation. Cell invasion and migration were assessed by transwell assays. The expression of FOXO3a, TWIST-1, miR-10b, CADM2, FAK, phosphor-AKT and the epithelial-mesenchymal transition (EMT)-related protein (N-cadherin, E-cadherin and vimentin) were analyzed by RT-qPCR, immunohistochemical staining, immunofluorescence assay or western blot, respectively. Xenograft mouse models were used to analyze the role of the FOXO3a in breast cancer.ResultsFOXO3a was down-regulated and TWIST-1 was up-regulated in breast cancer tissues. Overexpression of FOXO3a or knockdown of TWIST-1 suppressed the proliferation, invasion, migration and EMT of breast cancer cells. Overexpression of TWIST-1 could reverse the effect of FOXO3a on the proliferation, invasion, migration and EMT of breast cancer. Moreover, FOXO3a suppressed the growth and metastasis of breast cancer by targeting TWIST1 in vivo.ConclusionFOXO3a inhibited the EMT and metastasis of breast cancer via TWIST-1/miR-10b/CADM2 axis.  相似文献   

15.
Recently, microRNA-448 (miR-448) has been reported to be a tumor-associated miRNA in many human cancers. In this study, we investigated the function of miR-448 in non-small–cell lung cancer (NSCLC) progression and confirmed the relationship between miR-448 and insulin receptor substrates 2 (IRS2). First, downregulation of miR-448 and upregulation of IRS2 were detected in NSCLC using the quantitative real-time polymerase chain reaction (qRT-PCR) assay. Furthermore, the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay showed that miR-448 inhibited cell viability in NSCLC. Transwell and Western blot assays indicated that the upregulation of miR-448 inhibited cell metastasis and epithelial-to-mesenchymal transition (EMT) in NSCLC. And it was found that overexpression of miR-448 reduced the adhesion of A549 cells to HUVEC cells using the adhesion assay. Furthermore, the dual luciferase assay indicated that miR-448 directly targeted IRS2 in NSCLC. In addition, it was found that IRS2 silencing had an inhibitory effect on the progression of NSCLC, and the upregulation of IRS2 partially impaired the inhibitory effect of miR-448 in NSCLC. Briefly, overexpression of miR-448 inhibited cell proliferation, metastasis, and EMT by suppressing IRS2 expression in NSCLC.  相似文献   

16.
Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.  相似文献   

17.
18.

Background

Pleckstrin homology-like domain family A member 1 (PHLDA1) is a tumor suppressor gene in gastric cancer, but its role regulated by circular RNAs (circRNAs) is not known. CircRNAs are important regulators in cancer growth and progression, however, the molecular roles of circRNAs in gastric cancer are rarely known. The study was aimed to investigate the role of circRNAs in regulating PHLDA1 expression in gastric cancer.

Results

The circRNA expression profile in the gastric cancer tissues by circRNA microarray showed that hsa_circ_0027599 (circ_0027599) was significantly down-regulated in gastric cancer patients and cells when comparing with the controls. Circ_0027599 overexpression suppressed gastric cancer cell proliferation and metastasis. By using bioinformatics tools and luciferase reporter assays, circ_0027599 was verified as a sponge of miR-101-3p.1 (miR-101) and suppressed cancer cell survival and metastasis. It was also verified that PHLDA1 was regulated by circ_0027599 in gastric cancer cells.

Conclusions

The study uncovered that PHLDA1 was regulated by circ_0027599/miR-101, which suppressed gastric cancer survival and metastasis in gastric cancer.
  相似文献   

19.
In our study we examined the role of microRNA-294 (miR-294) in bladder cancer and related mechanisms. Realtime polymerase chain reaction (RT-PCR) was performed to determine the expression level of miR-294. Western blot was used to determine the expression of NRAS, mainly factors in the PI3K/AKT and JAK/STAT pathways. Cell counting kit8 assay, clonogenic assay, wound-healing assay, transwell and flow cytometry were used to explore, respectively, cell proliferation, survival, migration, invasion, and apoptosis of bladder cancer cell line T24. The expressions of miR-294 in bladder cancer cells including J82, HT1376, T24, and SW780 were significantly increased compared to those in human bladder epithelium cells (both HCV29 and SV-HUC-1). The proliferation rate, surviving fraction, migration, and invasion of T24 cells in miR-294 mimetic transfected group were significantly increased, while they were significantly decreased by miR294 inhibitor transfection. Moreover, miR-294 suppression could increase the apoptotic rate of T24 cells. In addition, drug resistance of T24 cells to cisplatin was increased in miR-294 mimetic-treated group, while it was decreased by miR-294 inhibitor compared to empty control. Overexpression of miR-294 could upregulate NRAS expression in T24 cells and activate PI3K/AKT and JAK/STAT pathways. We found that miR-294 expression was positively related with proliferation and motility of T24 cells. Moreover, miR-294 suppression could promote the sensitivity of T24 cells to cisplatin. We also found miR-294 could upregulate NRAS and activate the PI3K/AKT and JAK/STAT pathways in T24 cells.  相似文献   

20.
先前的研究表明,miR-150-5p发挥抑癌基因的作用,调控肿瘤细胞的侵袭与转移。然而,关于其在乳腺癌细胞侵袭与转移中的机制尚不明确。本实验旨在研究miR-150-5p负向调控Rab1A在乳腺癌细胞上皮-间质转化(epithelial-mesenchymal transition,EMT)中的作用。双荧光素酶的结果显示,miR-150-5p可负向调控Rab1A。荧光定量PCR (qRT-PCR) 结果显示,miR-150-5p在乳腺癌细胞MCF-7及MDA-MB-231(MDA-231)中的表达水平明显低于正常乳腺上皮细胞MCF-10A; 在MDA-231中过表达miR-150-5p后,qRT-PCR结果显示,Rab1A mRNA的表达水平明显降低。Western印迹结果显示,过表达miR-150-5p后,miR-150-5p组细胞中的Rab1A、波形蛋白(vimentin)及N-钙黏着蛋白(N-cadherin)的表达水平相对于对照组(NC)细胞明显降低,而E-钙黏着蛋白(E-cadherin)的表达水平明显增加。Transwell侵袭和划痕实验显示,与miR-150-5p+Con组细胞相比,miR-150-5p+Rab1A组细胞的侵袭和迁移能力明显增加。qRT-PCR结果显示,miR-150-5p+Rab1A组细胞的Rab1A mRNA表达水平明显增加。Western印迹结果显示,miR-150-5p+Rab1A组细胞中的波形蛋白、N-钙黏着蛋白表达水平明显增加, 而E-钙黏着蛋白表达明显降低,过表达Rab1A后显著逆转了miR-150-5p对EMT的影响。综上所述,miR-150-5p可以通过负向调控Rab1A抑制EMT,进而抑制乳腺癌细胞的侵袭和迁移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号