首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrative study of a meromictic lake ecosystem in Antarctica   总被引:1,自引:0,他引:1  
In nature, the complexity and structure of microbial communities varies widely, ranging from a few species to thousands of species, and from highly structured to highly unstructured communities. Here, we describe the identity and functional capacity of microbial populations within distinct layers of a pristine, marine-derived, meromictic (stratified) lake (Ace Lake) in Antarctica. Nine million open reading frames were analyzed, representing microbial samples taken from six depths of the lake size fractionated on sequential 3.0, 0.8 and 0.1 μm filters, and including metaproteome data from matching 0.1 μm filters. We determine how the interactions of members of this highly structured and moderately complex community define the biogeochemical fluxes throughout the entire lake. Our view is that the health of this delicate ecosystem is dictated by the effects of the polar light cycle on the dominant role of green sulfur bacteria in primary production and nutrient cycling, and the influence of viruses/phage and phage resistance on the cooperation between members of the microbial community right throughout the lake. To test our assertions, and develop a framework applicable to other microbially driven ecosystems, we developed a mathematical model that describes how cooperation within a microbial system is impacted by periodic fluctuations in environmental parameters on key populations of microorganisms. Our study reveals a mutualistic structure within the microbial community throughout the lake that has arisen as the result of mechanistic interactions between the physico-chemical parameters and the selection of individual members of the community. By exhaustively describing and modelling interactions in Ace Lake, we have developed an approach that may be applicable to learning how environmental perturbations affect the microbial dynamics in more complex aquatic systems.  相似文献   

2.
There is a poor understanding of how the physiology of polymicrobial communities in cystic fibrosis (CF) lungs contributes to pulmonary exacerbations and lung function decline. In this study, a microbial culture system based on the principles of the Winogradsky column (WinCF system) was developed to study the physiology of CF microbes. The system used glass capillary tubes filled with artificial sputum medium to mimic a clogged airway bronchiole. Chemical indicators were added to observe microbial physiology within the tubes. Characterization of sputum samples from seven patients showed variation in pH, respiration, biofilm formation and gas production, indicating that the physiology of CF microbial communities varied among patients. Incubation of homogenized tissues from an explant CF lung mirrored responses of a Pseudomonas aeruginosa pure culture, supporting evidence that end-stage lungs are dominated by this pathogen. Longitudinal sputum samples taken through two exacerbation events in a single patient showed that a two-unit drop in pH and a 30% increase in gas production occurred in the tubes prior to exacerbation, which was reversed with antibiotic treatment. Microbial community profiles obtained through amplification and sequencing of the 16S rRNA gene showed that fermentative anaerobes became more abundant during exacerbation and were then reduced during treatment where P. aeruginosa became the dominant bacterium. Results from the WinCF experiments support the model where two functionally different CF microbial communities exist, the persistent Climax Community and the acute Attack Community. Fermentative anaerobes are hypothesized to be the core members of the Attack Community and production of acidic and gaseous products from fermentation may drive developing exacerbations. Treatment targeting the Attack Community may better resolve exacerbations and resulting lung damage.  相似文献   

3.
【目的】过度使用抗生素作为动物饲料添加剂,导致畜禽粪便已成为抗生素抗性基因的主要蓄积库,为了研究蝇蛆(Musca domestica)对猪粪中残留抗生素及抗性基因的影响,本文动态采集了实际农场条件下蝇蛆转化过程中猪粪堆体及虫体样本。【方法】利用q PCR、液相色谱-电喷雾质谱、同位素内标法、Illumina高通量测序以及局部相似性研究蝇蛆生物转化过程中残留抗生素降解效能及相关抗性基因组变化的微生物生态机制。【结果】6 d周期内,猪粪中四环素、土霉素、金霉素、强力霉素、磺胺嘧啶、诺氟沙星、氧氟沙星、环丙沙星以及恩诺沙星等9种残留抗生素含量显著下降,累积减量为34.3%–58.1%,每日减量百分比介于7.8%–57.4%之间。猪粪中共检测到的158种抗性基因,其中有118种大幅衰减,衰减量平均达79.3%;23种抗性基因存在富集现象,富集倍数平均为3.48。在蝇蛆肠道的作用下,粪源微生物群落中Bacteroidetes相对丰度下降,Proteobacteria相对丰度增加,尤其是Ignatzschineria增幅最大。网络分析发现,抗性基因的增减与微生物群落的变化显著相关,与抗性基因衰减相关的微生物主要属于Clostridiales和Bacteroidales,而与抗性基因富集相关的微生物主要为Alcaligenaceae、[Weeksellaceae]及Bacillales。【结论】蝇蛆可有效削减猪粪中的残留抗生素及防控抗性基因向环境扩散。  相似文献   

4.
通过培养的方法研究了土霉素暴露和小麦根际抗性细菌的数量、种类、分布特征及土壤酶活性之间的剂量效应关系。结果表明,土霉素暴露下小麦根际单一抗生素抗性细菌数量和抗土霉素—链霉素双重抗性细菌数都明显增加,且与暴露剂量呈正效应关系;同时,土壤磷酸酶、脱氢酶活性下降,但与土霉素的剂量效应关系不明显。从土霉素暴露的土壤中分离到50株抗性细菌,经形态观察、RFLP分组和16S rDNA序列测定与分析,将它们聚集在Actinobacteria、Bacilli、Alphaproteobacteria、Gammaproteobacteria 和Sphingobacteria类群。其中放线菌最多(15株),占抗性菌总数的30 %;其次是Bacillus属细菌(9株)和Pseudomonas属细菌(8株),分别占18 %和16 %。同时,具有抗性的人类机会致病菌Pseudomonas、Sphingomonas和Stenotrophomonas属细菌在土霉素暴露的样品中均被分离到,分别占抗性菌株总数的16 %、8 %和4 %。值得注意的是,随着土霉素暴露剂量的增加,小麦根际优势促生菌Bacillus属细菌的抗性检出率逐步降低;但具有抗生素抗性的人类机会致病菌Pseudomonas、Sphingomonas和Stenotrophomonas属细菌的检出率却明显增加,提示可能会进一步增大其机会致病性。  相似文献   

5.
Wastewater treatment plants (WWTPs) are major collection pools of antibiotics of which low concentrations may induce antibiotic resistance in their microbial communities and pose threat to human health. However, information is still limited on the microbial community alteration in WWTPs upon exposure to low-dose antibiotics due to absence of negative control systems without input of resistant bacteria and resistance genes. Here we report the impact of trace erythromycin (ERY) and dehydrated erythromycin (ERY-H2O) on microbial community dynamics in three long-term (1 year) running sequencing batch reactors (SBRs), R1 (ERY-H2O), R2 (ERY), and negative control R3. The PhyloChip microarray analysis showed that ERY-H2O and ERY significantly altered their microbial communities based on bacterial richness (e.g., 825 operational taxonomic units (OTUs) in R1, 699 OTUs in R2, and 920 OTUs in R3) and population abundance (15 and 48 subfamilies with >80 % abundance decrease in R1 and R2, respectively). ERY-H2O and ERY have broad but distinct antimicrobial spectrums. For example, bacteria of all the major phyla (i.e., Proteobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi) present in SBRs were severely inhibited by ERY-H2O and ERY, but bacteria of Acidobacteria, Chlorobi, Firmicutes, Nitrospira and OP10 phyla were only inhibited by ERY. Very limited bacterial groups showed antibiotic resistance to ERY-H2O or ERY through forming biofilms (e.g., Zoogloea) or synthesizing resistant proteins (e.g., Thauera, Candidatus Accumulibacter, Candidatus Competibacter, and Dechloromonas) in the SBRs. Inhibition was observed to be the main effect of ERY-H2O and ERY on microbial communities in the reactors. The results would broaden our knowledge of effects of low-dose antibiotics on microbial communities in WWTPs.  相似文献   

6.
Agricultural activities, including stock-farming, planting industry, and fish aquaculture,can affect the physicochemical and biological characters of freshwater lakes. However, the effects of pollution producing by agricultural activities on microbial ecosystem of lakes remain unclear.Hence, in this work, we selected Honghu Lake as a typical lake that is influenced by agriculture activities. We collected water and sediment samples from 18 sites, which span a wide range of areas from impacted and less-impacted areas. We performed a geospatial analysis on the composition of microbial communities associated with physicochemical properties and antibiotic pollution of samples. The co-occurrence networks of water and sediment were also built and analyzed. Our results showed that the microbial communities of impacted and less-impacted samples of water were largely driven by the concentrations of TN, TP, NO_3^--N, and NO_2^--N, while those of sediment were affected by the concentrations of Sed-OM and Sed-TN. Antibiotics have also played important roles in shaping these microbial communities: the concentrations of oxytetracycline and tetracycline clearly reflected the variance in taxonomic diversity and predicted functional diversity between impacted and less-impacted sites in water and sediment samples, respectively. Furthermore, for samples from both water and sediment, large differences of network topology structures between impacted and less-impacted were also observed. Our results provide compelling evidence that the microbial community can be used as a sentinel of eutrophication and antibiotics pollution risk associated with agricultural activity; and that proper monitoring of this environment is vital to maintain a sustainable environment in Honghu Lake.  相似文献   

7.
The efficacy of antibiotic treatments targeting polymicrobial communities is not well predicted by conventional in vitro susceptibility testing based on determining minimum inhibitory concentration (MIC) in monocultures. One reason for this is that inter-species interactions can alter the community members’ susceptibility to antibiotics. Here we quantify, and identify mechanisms for, community-modulated changes of efficacy for clinically relevant antibiotics against the pathogen Pseudomonas aeruginosa in model cystic fibrosis (CF) lung communities derived from clinical samples. We demonstrate that multi-drug resistant Stenotrophomonas maltophilia can provide high levels of antibiotic protection to otherwise sensitive P. aeruginosa. Exposure protection to imipenem was provided by chromosomally encoded metallo-β-lactamase that detoxified the environment; protection was dependent upon S. maltophilia cell density and was provided by S. maltophilia strains isolated from CF sputum, increasing the MIC of P. aeruginosa by up to 16-fold. In contrast, the presence of S. maltophilia provided no protection against meropenem, another routinely used carbapenem. Mathematical ordinary differential equation modelling shows that the level of exposure protection provided against different carbapenems can be explained by differences in antibiotic efficacy and inactivation rate. Together, these findings reveal that exploitation of pre-occurring antimicrobial resistance, and inter-specific competition, can have large impacts on pathogen antibiotic susceptibility, highlighting the importance of microbial ecology for designing successful antibiotic treatments for multispecies communities.Subject terms: Antibiotics, Bacterial infection, Microbial ecology  相似文献   

8.
Parasites harbour rich microbial communities that may play a role in host-parasite interactions, from influencing the parasite’s infectivity to modulating its virulence. Experimental manipulation of a parasite’s microbes would be essential, however, in order to establish their causal role. Here, we tested whether indirect exposure of a trematode parasite within its snail intermediate host to a variety of antibiotics could alter its bacterial community. Based on sequencing the prokaryotic 16S ssrRNA gene, we characterised and compared the bacterial community of the trematode Philophthalmus attenuatus before, shortly after, and weeks after exposure to different antibiotics (penicillin, colistin, gentamicin) with distinct activity spectra. Our findings revealed that indirectly treating the parasites by exposing their snail host to antibiotics resulted in changes to their bacterial communities, measured as their diversity, taxonomic composition, and/or the relative abundance of certain taxa. However, alterations to the parasite’s bacterial community were not always as predicted from the activity spectrum of the antibiotic used. Furthermore, the bacterial communities of the parasites followed significantly divergent trajectories in the days post-exposure to antibiotics, but later converged toward a new state, i.e. a new bacterial community structure different from that pre-exposure. Our results confirm that a trematode’s microbial community can be experimentally altered by antibiotic exposure while within its snail host, with the dynamic nature of the bacterial assemblage driving it to a new state over time after the perturbation. This research opens new possibilities for future experimental investigations of the functional roles of microbes in host-parasite interactions.  相似文献   

9.
Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host''s resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances.  相似文献   

10.
Effect of antibiotics in the environment on microbial populations   总被引:1,自引:0,他引:1  
Antibiotics act as an ecological factor in the environment that could potentially affect microbial communities. The effects include phylogenetic structure alteration, resistance expansion, and ecological function disturbance in the micro-ecosystem. Numerous studies have detected changes of microbial community structure upon addition of antibiotics in soil and water environment. However, the causal relationship between antibiotic input and resistance expansion is still under debate, with evidence either supporting or declining the contribution of antibiotics on alteration of antibiotic resistance. Effects of antibiotics on ecological functions have also been discovered, including nitrogen transformation, methanogenesis, and sulfate reduction. In the latter part, this review discusses in detail on factors that influence antibiotic effects on microbial communities in soil and aquatic environment, including concentration of antibiotics, exposure time, added substrates, as well as combined effects of multiple antibiotics. In all, recent research progress offer an outline of effects of antibiotics in the natural environment. However, questions raised in this review need further investigation in order to provide a comprehensive risk assessment on the consequence of anthropogenic antibiotic input.  相似文献   

11.
The effect of antibiotics sulfadiazine and trimethoprim on activated sludge operated at 8°C was investigated. Performance and microbial communities of sequencing batch reactors (SBRs) and Membrane Bioreactors (MBRs) were compared before and after the exposure of antibiotics to the synthetic wastewater. The results revealed irreversible negative effect of these antibiotics in environmentally relevant concentrations on nitrifying microbial community of SBR activated sludge. In opposite, MBR sludge demonstrated fast adaptation and more stable performance during the antibiotics exposure. Dynamics of microbial community was greatly affected by presence of antibiotics. Bacteria from classes Betaproteobacteria and Bacteroidetes demonstrated the potential to develop antibiotic resistance in both wastewater treatment systems while Actinobacteria disappeared from all of the reactors after 60 days of antibiotics exposure. Altogether, results showed that operational parameters such as sludge retention time (SRT) and reactor configuration had great effect on microbial community composition of activated sludge and its vulnerability to antibiotics. Operation at long SRT allowed archaea, including ammonium oxidizing species (AOA) such as Nitrososphaera viennensis to grow in MBRs. AOA could have an important role in stable nitrification performance of MBR-activated sludge as a result of tolerance of archaea to antibiotics. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2708, 2019  相似文献   

12.
Individuals with cystic fibrosis (CF) often acquire chronic lung infections that lead to irreversible damage. We sought to examine regional variation in the microbial communities in the lungs of individuals with mild-to-moderate CF lung disease, to examine the relationship between the local microbiota and local damage, and to determine the relationships between microbiota in samples taken directly from the lung and the microbiota in spontaneously expectorated sputum. In this initial study, nine stable, adult CF patients with an FEV1>50% underwent regional sampling of different lobes of the right lung by bronchoalveolar lavage (BAL) and protected brush (PB) sampling of mucus plugs. Sputum samples were obtained from six of the nine subjects immediately prior to the procedure. Microbial community analysis was performed on DNA extracted from these samples and the extent of damage in each lobe was quantified from a recent CT scan. The extent of damage observed in regions of the right lung did not correlate with specific microbial genera, levels of community diversity or composition, or bacterial genome copies per ml of BAL fluid. In all subjects, BAL fluid from different regions of the lung contained similar microbial communities. In eight out of nine subjects, PB samples from different regions of the lung were also similar in microbial community composition, and were similar to microbial communities in BAL fluid from the same lobe. Microbial communities in PB samples were more diverse than those in BAL samples, suggesting enrichment of some taxa in mucus plugs. To our knowledge, this study is the first to examine the microbiota in different regions of the CF lung in clinically stable individuals with mild-to-moderate CF-related lung disease.  相似文献   

13.
Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these results indicate that the adult CF lung microbiome is largely stable through periods of exacerbation and antibiotic treatment and that short-term compositional changes in the airway microbiota do not account for CF pulmonary exacerbations.  相似文献   

14.
In light of their adverse impacts on resident microbial communities, it is widely predicted that broad-spectrum antibiotics can promote the spread of resistance by releasing resistant strains from competition with other strains and species. We investigated the competitive suppression of a resistant strain of Escherichia coli inoculated into human-associated communities in the presence and absence of the broad and narrow spectrum antibiotics rifampicin and polymyxin B, respectively. We found strong evidence of community-level suppression of the resistant strain in the absence of antibiotics and, despite large changes in community composition and abundance following rifampicin exposure, suppression of the invading resistant strain was maintained in both antibiotic treatments. Instead, the strength of competitive suppression was more strongly associated with the source community (stool sample from individual human donor). This suggests microbiome composition strongly influences the competitive suppression of antibiotic-resistant strains, but at least some antibiotic-associated disruption can be tolerated before competitive release is observed. A deeper understanding of this association will aid the development of ecologically-aware strategies for managing antibiotic resistance.Subject terms: Microbial ecology, Community ecology, Antibiotics

The overuse of broad-spectrum antibiotics in clinical and agricultural settings is a key driver of the current antibiotic resistance crisis [1]. Research into antibiotic resistance has traditionally focused on the evolution of resistance in individual pathogens [2]. In the last decade, researchers have turned their attention to the collateral damage inflicted on commensal members of the microbiome, such as those belonging to the dense communities of the human gastrointestinal tract [3, 4]. Several studies have shown that antibiotics can leave gut communities vulnerable to colonisation by other pathogens [57], and, most recently, resistance evolution in invading strains can be facilitated by the absence of community suppression [8, 9]. Taken together, these two lines of enquiry appear to bear out conventional wisdom that relative to narrow-spectrum antibiotics or antibiotic-free conditions, broad spectrum antibiotics should increase the likelihood of communities being invaded by resistant strains [10, 11]. On the other hand, given evidence that community-level properties can sometimes be robust to changes in taxonomic composition [12], it is possible that some antibiotic-associated disruption can be tolerated before colonization resistance is affected. Despite the importance of these contrasting predictions, there have been few, if any, direct tests in human-associated microbiota.We investigated the effect of broad and narrow spectrum antibiotics on the strength of competitive suppression on a resistant variant (generated by in vitro selection for resistance mutations) of a focal strain (Escherichia coli K-12 MG1655) inoculated into gut microbiome communities collected from human faecal samples. The focal strain was jointly resistant to the broad-spectrum antibiotic rifampicin (targets Gram-positives and Gram-negatives via inhibition of the highly conserved bacterial RNA polymerase) and the narrow spectrum antibiotic polymyxin B (only targets Gram-negatives). The focal strain was inoculated alongside live or sterile slurry produced using a sample from one of three healthy human donors (described in [9]) into customized gut media without antibiotics or supplemented with 128 μg/ml rifampicin or 4 μg/ml polymyxin B (see Fig S1). Following 24 h incubation under anaerobic conditions, focal strain density and total biomass were measured via colony counting and flow cytometry, and community composition and diversity were analysed via 16S rRNA sequencing.In the absence of either antibiotic, focal strain density after 24 h was significantly lower in the presence of the three donor communities, indicative of strong competitive suppression (Fig. 1a). Surprisingly, we detected similarly strong competitive suppression in both the antibiotic treatments as we did in the antibiotic-free treatment. Instead, we found that focal strain performance was a stronger function of the specific donor community, irrespective of antibiotic treatment (Figs. 1b, and S2).Open in a separate windowFig. 1Effect of community, donor and antibiotic on focal strain abundance.a Violin plots showing the distribution of observed abundances of the focal strain in each antibiotic treatment. Blue denotes community free treatments; yellow denotes community treatment. Point shape denotes the individual human donor of live community or sterilized slurry: donor 1 = circles, donor 2 = squares, donor 3 = diamonds. b Treatment contrasts (posterior distributions of parameter estimates for a linear model with negative binomial errors) for focal strain abundance as a function of community (live vs sterile slurry), antibiotic (none, polymixin B or rifampicin), and donor (slurry prepared with samples from human donor 1, 2 or 3), and the interactions between community and antibiotic, and community and donor. Posterior parameter estimates in green have 95% credible intervals that do not overlap with 0 (i.e., there is less than 5% probability there is no effect of the variables/interactions captured by these coefficients). The reference level (vertical black line) = donor 1 in the no antibiotic treatment in the absence of the community (i.e., sterilized slurry).What makes these results particularly striking is that, consistent with previous studies [7, 10, 13], treatment with a broad-spectrum antibiotic was still associated with a marked shift in community composition (analysis of 16S amplicon data) (Fig. 2a). Based on OTU composition, all three donors in the rifampicin treatment cluster separately from the polymyxin B and antibiotic-free treatments, which cluster together (Fig. 2b). This divergence in composition appears to be largely driven by enrichment of both Enterobacteriaceae and Erysipelotrichaceae in the rifampicin treatment (Fig. 2a). In addition to strong shifts in composition, total bacterial abundance was significantly reduced in the rifampicin treatment (Figs. 2c and S3). Despite this, total richness and diversity (Shannon Index) after 24 h did not differ between the treatments (Fig. 2c). In contrast, diversity loss over time was more strongly associated with donor identity, with the donor community associated with the weakest competitive suppression (donor 3) also exhibiting the largest decline in richness and diversity across all treatments. This observation is consistent with previous work demonstrating that colonization resistance in the mouse gut is highly contingent on the complexity and composition of the resident microbiota [14].Open in a separate windowFig. 2Community response to antibiotic treatments.a Heatmap of relative abundance of the ten most abundant families of bacteria across treatments (derived from amplicon data). I = inoculum; AB free = Antibiotic free; Poly = polymyxin B; Rif = rifampicin. b NMDS ordination of family level composition in each treatment-donor combination. c Violin plots showing the abundance (top), species richness (middle) and diversity (Shannon Index) (bottom) distributions in each treatment. In b and c: circles = donor 1; squares = donor 2, diamonds = donor 3.A limitation of this study is that we only considered the effects of two antibiotics. Nevertheless, given the scale of community perturbation observed (Fig. 2), we can at least be sure our findings are not explained by a lack of antibiotic effects in our system. There must be some limit dictated by antibiotic concentration, combination, or duration of exposure, beyond which we would expect to observe stronger competitive release. Indeed, prior research has shown that antibiotics can greatly inhibit colonisation resistance [15, 16]. As such, characterizing where this limit lies (e.g., by investigating community-mediated suppression as a function of antibiotic concentration/duration) will be an important challenge for future work. Similarly, although we only considered a single focal strain, and other strains/species may have been more invasive (for example, those with fewer, different or less costly resistance mutations), key for our experiment was that the focal strain had a positive growth rate over the timescale of the experiment, despite exhibiting significant resistance costs in antibiotic-free assays (Fig. S1). This allowed us to test for sensitivity of competitive suppression to antibiotic treatment. We also note that in spite of a small boost in the focal strain’s performance in the presence of rifampicin independent of the community (a possible hormetic response [17] absent under aerobic growth in LB, Fig S1), we did not observe an increase in the magnitude of competitive release in the rifampicin treatment. Finally, the drop in diversity indicates, unsurprisingly, microcosms are a novel environment relative to the source environment. Despite this, key taxa in each community were stable over the course of the experiment, and previously over a longer timescale in the same set-up [9], demonstrating these conditions sustain diverse human-associated communities over relevant timescales.In conclusion, these results are consistent with prevailing wisdom that healthy gut communities can suppress invading strains and thereby reduce the likelihood of resistance emerging [8, 9, 18]. Nevertheless, the absence of a significant effect of broad, or even narrow, spectrum antibiotics on the degree of competitive suppression of our focal strain is much more surprising. Despite the limitations of scope discussed above, this shows that the functional diversity of gut communities may be more robust to disturbance by broad spectrum antibiotics than previously recognised. This is not to suggest that the use of broad-spectrum antibiotics does not drive marked changes in composition but rather that there is some degree of functional redundancy in diverse communities that facilitates the maintenance of competitive suppression [12, 19]. Notwithstanding the need to test how these findings translate to in vivo settings, this finding is relevant for optimizing personalised treatments that either account for disruption by antibiotics or that make microbiomes harder for pathogens to invade.  相似文献   

15.
Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA), comprising six sites along 134 km of river sampled in both spring and fall for two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest (∼65,000 microbial ‘species’ identified) and most novel (93% of OTUs do not match known microbial diversity) ecosystems analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent review of global soil metagenomes. Community structure and functional potential have been significantly altered by anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples) and the overall microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential. Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering, though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities are highly complex and sensitive to changes in land use practices.  相似文献   

16.
We show that inferring the taxa-abundance distribution of a microbial community from small environmental samples alone is difficult. The difficulty stems from the disparity in scale between the number of genetic sequences that can be characterized and the number of individuals in communities that microbial ecologists aspire to describe. One solution is to calibrate and validate a mathematical model of microbial community assembly using the small samples and use the model to extrapolate to the taxa-abundance distribution for the population that is deemed to constitute a community. We demonstrate this approach by using a simple neutral community assembly model in which random immigrations, births, and deaths determine the relative abundance of taxa in a community. In doing so, we further develop a neutral theory to produce a taxa-abundance distribution for large communities that are typical of microbial communities. In addition, we highlight that the sampling uncertainties conspire to make the immigration rate calibrated on the basis of small samples very much higher than the true immigration rate. This scale dependence of model parameters is not unique to neutral theories; it is a generic problem in ecology that is particularly acute in microbial ecology. We argue that to overcome this, so that microbial ecologists can characterize large microbial communities from small samples, mathematical models that encapsulate sampling effects are required.  相似文献   

17.
In agriculture, antibiotics are used for the treatment and prevention of livestock disease. Antibiotics perturb the bacterial gut composition but the extent of these changes and potential consequences for animal and human health is still debated. Six calves were housed in a controlled environment. Three animals received an injection of the antibiotic florfenicol (Nuflor), and three received no treatment. Faecal samples were collected at 0, 3 and 7 days, and bacterial communities were profiled to assess the impact of a therapy on the gut microbiota. Phylogenetic analysis (16S-rDNA) established that at day 7, antibiotic-treated microbiota showed a 10-fold increase in facultative anaerobic Escherichia spp, a signature of imbalanced microbiota, dysbiosis. The antibiotic resistome showed a high background of antibiotic resistance genes, which did not significantly change in response to florfenicol. However, the maintenance of Escherichia coli plasmid-encoded quinolone, oqxB and propagation of mcr-2, and colistin resistance genes were observed and confirmed by Sanger sequencing. The microbiota of treated animals was enriched with energy harvesting bacteria, common to obese microbial communities. We propose that antibiotic treatment of healthy animals leads to unbalanced, disease- and obese-related microbiota that promotes growth of E. coli carrying resistance genes on mobile elements, potentially increasing the risk of transmission of antibiotic resistant bacteria to humans.  相似文献   

18.
Little is known about microbial communities in the Ganges River, India and how they respond to intensive anthropogenic inputs. Here we applied shotgun metagenomics sequencing to study microbial community dynamics and function in planktonic samples collected along an approximately 700 km river transect, including urban cities and rural settings in upstream waters, before and after the monsoon rainy season. Our results showed that 11%–32% of the microbes represented terrestrial, sewage and human inputs (allochthonous). Sewage inputs significantly contributed to the higher abundance, by 13-fold of human gut microbiome (HG) associated sequences and 2-fold of antibiotic resistance genes (ARGs) in the Ganges relative to other riverine ecosystems in Europe, North and South America. Metagenome-assembled genome sequences (MAGs) representing allochthonous populations were detectable and tractable across the river after 1–2 days of (downstream) transport (> 200 km apart). Only approximately 8% of these MAGs were abundant in U.S. freshwater ecosystems, revealing distinct biodiversity for the Ganges. Microbial communities in the rainy season exhibited increased alpha-diversity and spatial heterogeneity and showed significantly weaker distance-decay patterns compared with the dry season. These results advance our understanding of the Ganges microbial communities and how they respond to anthropogenic pollution.  相似文献   

19.
Notwithstanding the fundamental role that environmental microbes play for ecosystem functioning, data on how microbes react to disturbances are still scarce, and most factors that confer stability to microbial communities are unknown. In this context, antibiotic discharge into the environment is considered a worldwide threat for ecosystems with potential risks to human health. We therefore tested resilience of microbial communities challenged by the presence of an antibiotic. In a continuous culture experiment, we compared the abundance, composition and diversity of microbial communities undisturbed or disturbed by the constant addiction of tetracycline in low (10 µg/L) or intermediate (100 µg/L) concentration (press disturbance). Further, the bacterial communities in the three treatments had to face the sudden pulse disturbance of adding an allochthonous bacterium (Escherichia coli). Tetracycline, even at low concentrations, affected microbial communities by changing their phylogenetic composition and causing cell aggregation. This, however, did not coincide with a reduced microbial diversity, but was mainly caused by a shift in dominance of specific bacterial families. Moreover, the less disturbed community (10 µg/L tetracycline) was sometimes more similar to the control and sometimes more similar to heavily disturbed community (100 µg/L tetracycline). All in all, we could not see a pattern where the communities disturbed with antibiotics were less resilient to a second disturbance introducing E. coli, but they seemed to be able to buffer the input of the allochthonous strain in a similar manner as the control.  相似文献   

20.
Dysbiotic oral bacterial communities have a critical role in the etiology and progression of periodontal diseases. The goal of this study was to investigate the extent to which smoking increases risk for disease by influencing the composition of the subgingival microbiome in states of clinical health. Subgingival plaque samples were collected from 200 systemically and periodontally healthy smokers and nonsmokers. 16S pyrotag sequencing was preformed generating 1 623 713 classifiable sequences, which were compared with a curated version of the Greengenes database using the quantitative insights into microbial ecology pipeline. The subgingival microbial profiles of smokers and never-smokers were different at all taxonomic levels, and principal coordinate analysis revealed distinct clustering of the microbial communities based on smoking status. Smokers demonstrated a highly diverse, pathogen-rich, commensal-poor, anaerobic microbiome that is more closely aligned with a disease-associated community in clinically healthy individuals, suggesting that it creates an at-risk-for-harm environment that is primed for a future ecological catastrophe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号