首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC).

Methodology/Principal Findings

In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5-TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dtmax and dP/dtmin with prolonged tau (P<0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro.

Conclusions/Significance

Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target.  相似文献   

2.
The goal of this study was to assess the potential cross-regulation of cyclic nucleotides in human corpus cavernosum (HCC). Incubation of primary cultures of HCC smooth muscle cells with either the NO donor sodium nitroprusside (SNP, 10 μM) or the phosphodiesterase type 5 (PDE 5) inhibitor sildenafil (50 nM) produced little or no changes in the intracellular cGMP levels. Incubation with both SNP and sildenafil produced marked increases in cGMP. Interestingly, incubation of cells with 10 μM of forskolin or PGE1 produced significant enhancement of cGMP accumulation. These increases were not further enhanced by the addition of SNP and sildenafil. Kinetic analyses of cGMP hydrolysis by PDE 5 showed that high concentrations of cAMP reversibly inhibited the enzyme with a Ki of 258 ± 54 μM. The increase in cGMP levels in response to cAMP generating agents is not due to assay artifact since cAMP did not cross-react with cGMP antibody. Our data suggest that cAMP up-regulates intracellular levels of cGMP, in part, by inhibition of PDE 5. We also noted that cGMP down-regulates cAMP synthesis via a mechanism requiring G-protein coupling of adenylyl cyclase. These observations may have important implications in the utility of pharmacotherapeutic agents targeting cyclic nucleotide metabolism for the treatment of erectile dysfunction.  相似文献   

3.
4.
Our previous studies demonstrated that the topical application of caffeine is a potent inhibitor of UVB-induced carcinogenesis and selectively increases apoptosis in tumors but not in non-tumor areas of the epidermis in mice that are at a high risk for developing skin cancer. While this effect is mainly through a p53 independent pathway, the mechanism by which caffeine inhibits skin tumor formation has not been fully elucidated. Since caffeine is a non-specific phosphodiesterase inhibitor, we investigated the effects of several PDE inhibitors on the formation of sunburn cells in mouse skin after an acute exposure to ultraviolet light B (UVB). The topical application of a PDE2 inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA hydrochloride), stimulated epidermal apoptosis compared to control (P<0.01) and to a greater extent than caffeine whereas a PDE4 inhibitor attenuated the epidermal apoptosis compared to control (P<0.01). Since PDE2 hydrolyzes cyclic nucleotides, mainly cGMP, the effects of EHNA hydrochloride on epidermal apoptosis following UVB exposure may be mediated, in part, by increased cGMP signaling. Data demonstrated that the topical application of dibutyryl cGMP stimulated epidermal apoptosis (P<0.01) following an acute exposure to UVB. Treating UVB-pretreated mice topically with 3.1 µmole or 0.8 µmole of EHNA hydrochloride attenuated tumor formation to a greater extent than treating with 6.2 µmole caffeine when these compounds were applied once a day, five days a week for 18 weeks. These observations suggest a novel role for PDE2 in UVB-induced tumorigenesis and that PDE2 inhibitors that mediate cGMP signaling may be useful for the prevention and treatment of skin cancer.  相似文献   

5.
We have shown that intracellular cGMP levels increase during retinoic acid‐ and mycophenolic acid‐induced neuroblastoma differentiation and that a 6 days treatment with 1 mM dbcGMP lead LAN5 cell to elaborate a network of neuritic processes suggesting an involvement of cGMP in neuroblastoma differentiation. We have also investigated the effects of some specific inhibitors of phosphodiesterases (PDE1, PDE3, PDE4 and PDE5) on human neuroblastoma (LAN5 and SHEP) growth and differentiation. After six days of incubation in the presence of each specific inhibitor at 10 × IC50 levels a cytostatic and differentiating effect was only observed with the PDE5 inhibitors Zaprinast and MY‐5445. The cytostatic effect of these compounds increased increasing their concentrations far above their IC50 levels for PDE5, suggesting that these compounds could act by interfering with other molecular events than direct cGMP‐PDE inhibition. No appreciable effect was observed using Dipyridamole, another specific PDE5 inhibitor.  相似文献   

6.
Native phosphodiesterase-5 (PDE5) homodimer contains distinct non-catalytic cGMP allosteric sites and catalytic sites for cGMP hydrolysis. Purified recombinant PDE5 was activated by pre-incubation with cGMP. Relatively low concentrations of cGMP produced a Native PAGE gel shift of PDE5 from a single band position (lower band) to a band with decreased mobility (upper band); higher concentrations of cGMP produced a band of intermediate mobility (middle band) in addition to the upper band. Two point mutations (G659A and G659P) near the catalytic site that reduced affinity for cGMP substrate retained allosteric cGMP-binding affinity like that of WT PDE5 but displayed cGMP-induced gel shift only to the middle-band position. The upper band could represent a form produced by cGMP binding to the catalytic site, while the middle band could represent a form produced by cGMP binding to the allosteric site. Millimolar cGMP was required for gel shift of PDE5 when added to the pre-incubation before Native PAGE, presumably due to removal of most of the cGMP during electrophoresis, but micromolar cGMP was sufficient for this effect if cGMP was included in the native gel buffer. cGMP-induced gel shift was associated with stimulation of PDE5 catalytic activity, and the rates of onset and reversibility of this effect suggested that it was due to cGMP binding to the allosteric site. Incubation of PDE5 with non-hydrolyzable, catalytic site-specific, substrate analogs such as the inhibitors sildenafil and tadalafil, followed by dilution, did not produce activation of catalytic activity like that obtained with cGMP, although both inhibitors produced a similar gel shift to the upper band as that obtained with cGMP. This implied that occupation of the catalytic site alone can produce a gel shift to the upper band. PDE5 activation or gel shift was reversed by lowering cGMP with dilution followed by at least 1 h of incubation. Such slow reversibility could prolong effects of cGMP on PDE5 in cells after decline of this nucleotide. Reversal was also achieved by Mg++ addition to the pre-incubation mixture to promote cGMP degradation, but Mg++ addition did not reverse the gel shift caused by sildenafil, which is not hydrolyzed by PDE5. Upon extensive dilution, the effect of tadalafil, a potent PDE5 inhibitor, to enhance catalytic-site affinity for this inhibitor was rapidly reversed. Thus, kinetic effect of binding of a high-affinity PDE5 inhibitor to the catalytic site is more readily reversible than that obtained by cGMP binding to the allosteric site. It is concluded that cGMP or PDE5 inhibitor binding to the catalytic site, or ligand binding to both the catalytic site and allosteric site simultaneously, changes PDE5 to a similar physical form; this form is distinct from that produced by cGMP binding to the allosteric site, which activates the enzyme and reverses more slowly.  相似文献   

7.
AimsPhosphodiesterases (PDEs) are key enzymes controlling cAMP and cGMP levels and spatial distribution within cardiomyocytes. Despite the clinical importance of several classes of PDE inhibitor there has not been a complete characterization of the PDE profile within the human cardiomyocyte, and no attempt to assess which species might best be used to model this for drug evaluation in heart disease.Main methodsVentricular cardiomyocytes were isolated from failing human hearts of patients with various etiologies of disease, and from rat and guinea pig hearts. Expression of PDE isoforms was determined using RT-PCR. cAMP- and cGMP-PDE hydrolytic activity was determined by scintillation proximity assay, before and after treatment with PDE inhibitors for PDEs 1, 2, 3, 4, 5 and 7. Functional effects of cAMP PDEi were determined on the contraction of single human, rat and guinea pig cardiomyocytes.Key findingsThe presence and activity of PDE5 were confirmed in ventricular cardiomyocytes from failing and hypertrophied human heart, as well as PDE3, with ventricle-specific results for PDE4 and a surprisingly large contribution from PDE1 for hydrolysis of both cAMP and cGMP. The total PDE activity of human cardiomyocytes, and the profile of inhibition by PDE1, 3, 4, and 5 inhibitors, was modelled well in guinea pig but not rat cardiomyocytes.SignificanceOur results provide the first full characterisation of human cardiomyocyte PDE isoforms, and suggest that guinea pig myocytes provide a better model than rat for PDE levels and activity.  相似文献   

8.
Phosphodiesterase-5 (PDE5) is a dimer containing a cGMP-specific catalytic domain and an allosteric cGMP-binding subdomain (GAF A) on each subunit. PDE5 exhibits three conformational forms that can be separated by Native PAGE and are denoted as Bands 1, 2, and 3 in decreasing order of mobility. A preparation comprised mainly of Band 2 PDE5 was partially converted to Band 3 PDE5 by 1 h incubation with cGMP or the PDE5-specific inhibitors sildenafil, vardenafil, or tadalafil, but not with cAMP, milrinone (PDE3-specific), or rolipram (PDE4-specific). Band 2 PDE5 was converted almost entirely to Band 3 PDE5 by overnight incubation with sildenafil at 30 °C. This time-dependent conversion was accompanied by a 7-fold increase in allosteric cGMP-binding activity, suggesting that Band 3 PDE5 is a much more active form than Band 2 PDE5 for allosteric cGMP binding. Conversion of Band 2 PDE5 to Band 3 PDE5 occurred faster by pre-incubation with cGMP, which binds to both the allosteric and catalytic sites of PDE5, than with catalytic site-specific sildenafil. Overnight incubation of a Band 2/Band 3 PDE5 mixture with EDTA caused time-dependent conversion to Band 1 PDE5 (apoenzyme), and this conversion was accompanied by a 50% loss in cGMP-binding activity. After incubation with EDTA, addition of Mn++ or Mg++ caused reversion of Band 1 to a Band 2/Band 3 PDE5 mixture in which Band 3 PDE5 predominated. This reversion was accompanied by a 3-fold increase in allosteric cGMP-binding activity. The combination of results implied that physiological conversion of Band 2 to Band 3 PDE5 by cGMP and/or divalent metal ion occupancy of the catalytic domain would increase allosteric cGMP binding to the enzyme. This conversion would produce a greater negative feedback effect on cGMP action by increasing sequestration of cGMP at the allosteric cGMP-binding site of PDE5 and by increasing cGMP degradation at the catalytic site of the enzyme. This conversion would also increase PDE5 inhibitor binding to the enzyme.  相似文献   

9.
Chronic treatment of rats with LiCl is known to induce a decrease in cAMP, while this decrease has also been found to occur together with both a simultaneous increase in total cortical phosphodiesterase (PDE; EC 3.1.4.17) activity and a concomitant increase in cGMP. These studies have implicated an involvement of PDE in lithium (Li+) action and it has been suggested that cGMP and the cGMP-stimulated PDE may be instrumental in the observed effects of Li+ on cAMP. In this study, three isozymes of PDE were isolated and identified from rat cortex and their activity determined, together with simultaneous measurement of cAMP and cGMP, after chronic treatment with oral LiCl (0.35% m/m). Li+ treatment exerted profound effects on cyclic nucleotides in the cortex, inducing significant suppression of cAMP while increasing cGMP levels. However, the ion only induced a slight but insignificant increase in the activities of the three PDE isozymes. To confirm these observations, methylparaben (MPB), a drug demonstrating both an ability to induce a selective stimulation of cAMP-specific PDE and also to lower intracellular levels of cGMP, was co-administration orally (0.4% m/m) with Li+ over the same period. This combination emphasized certain actions of Li+ not noted with Li+ alone. MPB inhibited the Li+-induced increase in cGMP, yet did not prevent the ion from decreasing cAMP. However, the combination of Li+ and MPB engendered a synergistic 100% increase in the activity of the membrane-bound, cAMP-specific PDE, PDE IV. This combination also produced a significant suppression of cAMP, while no reduction in cGMP was observed. The data is indicative that Li+-induced suppression of cAMP does not appear to be related to an effect on the cGMP-dependent PDE II, and that the increases in cGMP and PDE induced by Li+ observed previously and in the present study are two unrelated events. Instead, the synergistic response of Li+ plus MPB on PDE IV, and the associated reduction of cAMP, indicate that Li+ may promote selective cAMP hydrolysis via an effect on membrane-bound forms of PDE. This effect of Li+ on PDE IV, as well as the reciprocal effects on cyclic nucleotide balance, may have important implications in explaining the antipsychotic actions of the ion.  相似文献   

10.
The inhibitory interaction of phosphodiesterase-6 (PDE6) with its γ-subunit (Pγ) is pivotal in vertebrate phototransduction. Here, crystal structures of a chimaeric PDE5/PDE6 catalytic domain (PDE5/6cd) complexed with sildenafil or 3-isobutyl-1-methylxanthine and the Pγ-inhibitory peptide Pγ70−87 have been determined at 2.9 and 3.0 Å, respectively. These structures show the determinants and the mechanism of the PDE6 inhibition by Pγ and suggest the conformational change of Pγ on transducin activation. Two variable H- and M-loops of PDE5/6cd form a distinct interface that contributes to the Pγ-binding site. This allows the Pγ C-terminus to fit into the opening of the catalytic pocket, blocking cGMP access to the active site. Our analysis suggests that disruption of the H–M loop interface and Pγ-binding site is a molecular cause of retinal degeneration in atrd3 mice. Comparison of the two PDE5/6cd structures shows an overlap between the sildenafil and Pγ70−87-binding sites, thereby providing critical insights into the side effects of PDE5 inhibitors on vision.  相似文献   

11.
Phosphodiesterases (PDEs) are hydrolytic enzymes, which convert cyclic AMP (cAMP) and cyclic GMP (cGMP) into their corresponding monophosphates. PDE-dependent hydrolysis shape gradients of these second messengers in cells, which may form the basis of their compartmentation and play a key role in a vast number of physiological and pathological processes. Here, we present a novel approach for real-time monitoring of local cAMP and cGMP levels associated with particular PDEs. We used HEK 293 cells expressing genetic constructs encoding a PDE of interest (PDE3A, PDE4A1 or PDE5A) fused to cAMP and cGMP sensors, which allow to directly visualize changes in cyclic nucleotide concentrations in the vicinity of PDE molecules by fluorescence resonance energy transfer (FRET). FRET was detected by imaging of single cells on 96-well plates and demonstrated specific effects of PDE inhibitors on local cyclic nucleotide levels. In addition, this approach reported physiological regulation of PDE3A activity, its activation by PKA-dependent phosphorylation and inhibition by cGMP. In conclusion, our assay provides a unique and highly sensitive method to analyze PDE activity in living cells. It allows to sense cAMP gradients around particular PDE molecules and to study the pharmacological effects of selective inhibitors on localized cAMP signalling.  相似文献   

12.
Urinary colics from calculosis are frequent and intense forms of pain whose current pharmacological treatment remains unsatisfactory. New and more effective drugs are needed to control symptoms and improve stone expulsion. Recent evidence suggested that the Nitric Oxide (NO) / cyclic guanosine monophosphate (cGMP) / phosphodiesterase type 5 (PDE5) system may contribute to ureteral motility influencing stone expulsion. We investigated if PDE5 inhibitors and sGC stimulators influence ureteral contractility, pain behaviour and stone expulsion in a rat model of ureteral calculosis. We investigated: a)the sex-specific PDE5 distribution in the rat ureter; b)the functional in vitro effects of vardenafil and sildenafil (PDE5 inhibitors) and BAY41-2272 (sGC stimulator) on induced ureteral contractility in rats and c)the in vivo effectiveness of vardenafil and BAY41-2272, alone and combined with ketoprofen, vs hyoscine-N-butylbromide alone or combined with ketoprofen, on behavioural pain indicators and stone expulsion in rats with artificial calculosis in one ureter. PDE5 was abundantly expressed in male and female rats’ ureter. In vitro, both vardenafil and BAY41-2272 significantly relaxed pre-contracted ureteral strips. In vivo, all compounds significantly reduced number and global duration of “ureteral crises” and post-stone lumbar muscle hyperalgesia in calculosis rats. The highest level of reduction of the pain behaviour was observed with BAY41-2272 among all spasmolytics administered alone, and with the combination of ketoprofen with BAY41-2272. The percentage of stone expulsion was maximal in the ketoprofen+BAY41-2272 group. The NO/cGMP/PDE5 pathway is involved in the regulation of ureteral contractility and pain behaviour in urinary calculosis. PDE5 inhibitors and sGC stimulators could become a potent new option for treatment of urinary colic pain.  相似文献   

13.
In this study, we report the cloning of the rat cGMP-specific phosphodiesterase type 9 (PDE9A) and its localization in rat and mouse brain by non-radioactive in situ hybridization. Rat PDE9A was 97.6% identical to mouse PDE9A1 and showed 92.1% similarity on the amino acid level to the human homologue. PDE9A mRNA was widely distributed throughout the rat and mouse brain, with the highest expression observed in cerebellar Purkinje cells. Furthermore, strong staining was detected in areas such as cortical layer V, olfactory tubercle, caudate putamen and hippocampal pyramidal and granule cells. Comparison of PDE9A mRNA expression by double staining with the cellular markers NeuN and glial fibrillary acidic protein demonstrated that PDE9A expression was mainly detected in neurons and in a subpopulation of astrocytes. Using cGMP-immunocytochemistry, the localization of cGMP was investigated in the cerebellum in which the highest PDE9 expression was demonstrated. Strong cGMP immunoreactivity was detected in the molecular layer in the presence of the non-selective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). After treatment with soluble guanylyl cyclase activators the granular layer also showed cGMP staining, whereas no clear immunostaining was detected in Purkinje cells under all conditions investigated, which might be due to the presence of the IBMX-insensitive PDE9A in these cells. The present findings indicate that PDE9A is highly conserved between species and is widely distributed throughout the rodent brain. PDE9A is probably involved in maintenance of low cGMP levels in cells and might play an important role in a variety of brain functions involving cGMP-mediated signal transduction.  相似文献   

14.
Abstract

Context: Acting through different receptors, natriuretic peptides (atrial natriuretic peptide [ANP], brain type natriuretic peptide [BNP] and C-type natriuretic peptide [CNP]) increase intracellular cGMP, which then stimulates different pathways that activate fluid secretion. Objective: We used two-electrode voltage clamping to define the dominant pathway that is employed when natriuretic peptides activate cystic fibrosis transmembrane conductance regulator (CFTR) in the Xenopus oocyte expression system. Natriuretic peptides could activate CFTR by 1) cGMP cross-activation of protein kinase A (PKA), 2) cGMP activation of cGMP-dependent protein kinase II, 3) cGMP inhibition of phosphodiesterase type III (PDE3), or 4) direct activation of CFTR. Materials and Methods: cRNA-microinjected Xenopus laevis oocytes were perfused with diverse compounds that examined these pathways of natriuretic peptide signaling. Results and Discussion: ANP stimulated the shark CFTR (sCFTR)-mediated chloride conductance and this activation was inhibited by H-89, a specific inhibitor of PKA. After co-expression of the CNP receptor (NPR-B), sCFTR became stimulatable by CNP and was similarly inhibited by H-89, pointing to cross-activation of PKA. 8-pCPT-cGMP, a relatively cGKII-selective cGMP, failed to stimulate sCFTR. Another membrane-permeable and non-hydrolyzable analog of cGMP, 8-Br-cGMP, stimulated CFTR only at millimolar concentrations, consistent with cross-activation of PKA. The PDE inhibitors EHNA, rolipram, cilostamide, and amrinone did not significantly increase chloride conductance, arguing against a significant role for PDE2, PDE3 and PDE4 signaling in the oocyte. Sildenafil, a PDE5 inhibitor, caused a partial activation of sCFTR channels and this effect was again inhibited by H-89. Conclusion: From these experiments we conclude that in the Xenopus oocyte system, natriuretic peptides, 8-Br-cGMP, and PDE5 inhibitors activate CFTR by cross-activation of PKA.  相似文献   

15.
Cone photoreceptor disorders form a clinical spectrum of diseases that include progressive cone dystrophy (CD) and complete and incomplete achromatopsia (ACHM). The underlying disease mechanisms of autosomal recessive (ar)CD are largely unknown. Our aim was to identify causative genes for these disorders by genome-wide homozygosity mapping. We investigated 75 ACHM, 97 arCD, and 20 early-onset arCD probands and excluded the involvement of known genes for ACHM and arCD. Subsequently, we performed high-resolution SNP analysis and identified large homozygous regions spanning the PDE6C gene in one sibling pair with early-onset arCD and one sibling pair with incomplete ACHM. The PDE6C gene encodes the cone α subunit of cyclic guanosine monophosphate (cGMP) phosphodiesterase, which converts cGMP to 5′-GMP, and thereby plays an essential role in cone phototransduction. Sequence analysis of the coding region of PDE6C revealed homozygous missense mutations (p.R29W, p.Y323N) in both sibling pairs. Sequence analysis of 104 probands with arCD and 10 probands with ACHM revealed compound heterozygous PDE6C mutations in three complete ACHM patients from two families. One patient had a frameshift mutation and a splice defect; the other two had a splice defect and a missense variant (p.M455V). Cross-sectional retinal imaging via optical coherence tomography revealed a more pronounced absence of cone photoreceptors in patients with ACHM compared to patients with early-onset arCD. Our findings identify PDE6C as a gene for cone photoreceptor disorders and show that arCD and ACHM constitute genetically and clinically overlapping phenotypes.  相似文献   

16.
Production of high titer of antibodies against nuclear components is a hallmark of systemic lupus erythematosus, an autoimmune disease characterized by the progressive chronic inflammation of multiple joints and organs. Organ damage and dysfunction such as renal failure are typical clinical features in lupus. Cell hypermetabolism and hypertrophy can accelerate organ dysfunction. In this study we focus on a specific murine model of lupus, the MRL/lpr strain, and investigated the role of cyclic guanosine monophosphate (cGMP) catabolism in organ remodeling of main target tissues (kidney, spleen and liver) in comparison with age-matched control mice. In MRL/lpr-prone mice, the cGMP-phosphodiesterase (PDE) activities were significantly increased in the kidney (3-fold, P < 0.001), spleen (2-fold, P < 0.001) and liver (1.6-fold, P < 0.05). These raised activity levels were paralleled by both an increased activity of PDE1 in the kidney (associated with nephromegaly) and in the liver, and PDE2 in the spleen of lupus-prone mice. The up-regulation of PDE1 and PDE2 activities were associated with a decrease in intracellular cGMP levels. This underlines an alteration of cGMP-PDE signaling in the kidney, spleen and liver targeting different PDEs according to organs. In good agreement with these findings, a single intravenous administration to MRL/lpr mice of nimodipine (PDE1 inhibitor) but not of EHNA (PDE2 inhibitor) was able to significantly lower peripheral hypercellularity (P = 0.0401), a characteristic feature of this strain of lupus-prone mice. Collectively, our findings are important for generating personalized strategies to prevent certain forms of the lupus disease as well as for understanding the role of PDEs and cGMP in the pathophysiology of lupus.  相似文献   

17.
Long-term potentiation (LTP) is a long-lasting enhancement of synaptic transmission efficacy and is considered the base for some forms of learning and memory. Nitric oxide (NO)-induced formation of cGMP is involved in hippocampal LTP. We have studied in hippocampal slices the effects of application of a tetanus to induce LTP on cGMP metabolism and the mechanisms by which cGMP modulates LTP. Tetanus application induced a transient rise in cGMP, reaching a maximum at 10s and decreasing below basal levels 5 min after the tetanus, remaining below basal levels after 60 min. Soluble guanylate cyclase (sGC) activity increased 5 min after tetanus and returned to basal levels at 60 min. The decrease in cGMP was due to sustained tetanus-induced increase in cGMP-degrading phosphodiesterase activity, which remained activated 60 min after tetanus. Tetanus-induced activation of PDE and decrease of cGMP were prevented by inhibiting protein kinase G (PKG). This indicates that the initial increase in cGMP activates PKG that phosphorylates (and activates) cGMP-degrading PDE, which, in turn, degrades cGMP. Inhibition of sGC, of PKG or of cGMP-degrading phosphodiesterase impairs LTP, indicating that proper induction of LTP involves transient activation of sGC and increase in cGMP, followed by activation of cGMP-dependent protein kinase, which, in turn, activates cGMP-degrading phosphodiesterase, resulting in long-lasting reduction of cGMP content. Hyperammonemia is the main responsible for the neurological alterations found in liver disease and hepatic encephalopathy, including impaired intellectual function. Hyperammonemia impairs LTP in hippocampus by altering the modulation of this sGC-PKG-cGMP-degrading PDE pathway. Exposure of hippocampal slices to 1 mM ammonia completely prevents tetanus-induced decrease of cGMP by impairing PKG-mediated activation of cGMP-degrading phosphodiesterase. This impairment is responsible for the loss of the maintenance of LTP in hyperammonemia, and may be also involved in the cognitive impairment in patients with hyperammonemia and hepatic encephalopathy.  相似文献   

18.
The ubiquitous second messenger cyclic GMP (cGMP) is synthesized by soluble guanylate cyclases in response to nitric oxide (NO) and degraded by phosphodiesterases (PDE). We studied the homeostasis of cGMP in living thalamic neurons by using the genetically encoded fluorescence resonance energy transfer sensor Cygnet, expressed in brain slices through viral gene transfer. Natriuretic peptides had no effect on cGMP. Basal cGMP levels decreased upon inhibition of NO synthases or soluble guanylate cyclases and increased when PDEs were inhibited. Single cell RT-PCR analysis showed that thalamic neurons express PDE1, PDE2, PDE9, and PDE10. Basal cGMP levels were increased by the PDE2 inhibitors erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) and BAY60-7550 but were unaffected by PDE1 or PDE10 inhibitors. We conclude that PDE2 regulates the basal cGMP concentration in thalamic neurons. In addition, in the presence of 3-isobutyl-1-methylxanthine (IBMX), cGMP still decreased after application of a NO donor. Probenecid, a blocker of cGMP transporters, had no effect on this decrease, leaving PDE9 as a possible candidate for decreasing cGMP concentration. Basal cGMP level is poised at an intermediate level from which it can be up or down-regulated according to the cyclase and PDE activities.  相似文献   

19.

Background

Phosphodiesterases (PDEs) are a superfamily of evolutionary conserved cyclic nucleotides (cAMP/cGMP) hydrolysing enzymes, components of transduction pathways regulating crucial aspects of cell life. PDE5, one of these families, is the molecular target of several drugs used to treat erectile dysfunction and pulmonary hypertension. Despite its medical relevance, PDE5 macromolecular structure has only been solved for the isolated regulatory and catalytic domains. The definition of the quaternary structure of the full length PDE5 (MmPDE5A1), produced in large amounts in the yeast Kluyveromyces lactis, could greatly enhance the knowledge on its assembly/allosteric regulation and the development of new inhibitors for clinical-therapeutic applications.

Methods

Small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), size exclusion chromatography (SEC), native polyacrylamide gel electrophoresis (PAGE) and western blot (WB) were used to assess the assembly of PDE5A1.

Results

The full length MmPDE5A1 isoform is a mixture of dimers and tetramers in solution. We also report data showing that dimers and tetramers also coexist in vivo in platelets, blood components naturally containing high levels of PDE5.

Conclusions

This is the first time that structural studies on the full length protein evidenced the assembly of PDE5 in tetramers in addition to the expected dimers.

General Significance

The assembly of PDE5 in tetramers in platelets, beside the dimers, opens the possibility to alternative assembly/allosteric regulation of this enzyme, as component of large signaling complexes, in all cellular districts in which PDE5 is present.  相似文献   

20.

Background

Phosphodiesterases (PDEs) cleave phosphodiester bonds in cyclic nucleotides and play diverse roles in cell biology. PDE5A is a cytoplasmic phosphodiesterase which specifically degrades cyclic guanosine monophosphate (cGMP), a cell signaling molecule that plays important roles in neuronal signaling and vascular smooth muscle contraction. Inhibition of PDE5A induces headache resembling migraine headaches.

Aim

To test the hypothesis that Ser102 and Ser104 in PDE5A and/or their phosphoserine derivatives 1) regulate the intracellular localization and/or activity of PDE5A, and 2) modulate the interaction between PDE5A and pharmaceutical reagents in clinical or pre-clinical use for migraine headaches and other types of vascular dysfunction.

Methods

Wild type PDE5A or PDE5A with substitution mutations (Ser102Ala, Ser104Ala or Ser102Ala/Ser104Ala) were overexpressed in SK-N-AS neuroblastoma cells as C-terminal fusions with green fluorescent protein. Transfected cells were treated with sildenafil, cilostazol, glyceryl trinitrate, calcitonin gene-related peptide (CGRP) or sumatriptan. PDE5A-GFP fusion proteins were localized in fixed cells by immunofluorescence and PDE activity was quantified in cell extracts by standard in vitro assay using [3H] cGMP.

Results

The intracellular distribution of wild-type, single and double mutant PDE5A was similar and was not altered by exposure to sildenafil, cilostazol, glyceryl trinitrate, calcitonin gene-related peptide (CGRP) or sumatriptan. PDE5 activity was similar for wild type, Ser102Ala and Ser104Ala PDE5A, but activity of the Ser102Ala/Ser104Ala mutant was approximately two-fold higher than wild type. Double mutant Ser102Ala/Ser104Ala migrated as a single band on a native acrylamide gel, while wild-type and single mutant PDE5A migrated as a doublet.

Interpretation

Ser102 and Ser104 may influence the conformational flexibility of PDE5A, which may in turn influence phosphorylation status, allosteric regulation by cGMP or other as yet unknown regulatory mechanisms for PDE5A. PDE5A activation could be important in reversal of migraine-like headache.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号