首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Encapsulation of antibodies isolated from chicken egg yolk (IgY) in egg lecithin/cholesterol liposomes was attempted. IgY was successfully encapsulated into the liposomes by using the dehydration-rehydration method. Electron microscopic observation demonstrated that the liposomes prepared by this method were large multilamellar vesicles with a diameter of several μm. The encapsulation efficiency was improved by increasing the rehydration temperature to 60°C. The cholesterol/lecithin ratio also affected the efficiency, giving the highest value at a ratio of 1/4 (mol/mol). Some efflux of glucose through the liposomal membranes was observed, particularly for the liposome with a low cholesterol content, but that of IgY was not detected, irrespective of the cholesterol content. Encapsulation reduced the activity loss of the IgY antibodies under acidic conditions. IgY encapsulated in the liposomes was also markedly resistant to pepsin hydrolysis, which usually results in complete loss of activity with unencapsulated IgY, suggesting that liposomal encapsulation is an effective means for protecting IgY under gastric conditions.  相似文献   

2.
We have studied the liposome-mediated delivery of methotrexate-gamma-aspartate to five cell lines. The sensitivity of the cells to encapsulated drug varies widely in accordance with their ability to take up the liposomes. CV1-P cells can be 150-times more sensitive to encapsulated methotrexate-gamma-aspartate than to free drug, while AKR/J SL2 cells are only twice as sensitive to the encapsulated drug. Negatively-charged liposomes are much more efficient for delivery than are neutral liposomes, and cholesterol is an essential component of the liposome membrane for optimal drug delivery. The optimal liposome size for drug delivery is 0.1 micron, although the amount of cell-associated lipid is the same for all liposome sizes. The effect of the encapsulated drug is inhibited by NH4Cl, suggesting an endocytic mechanism for delivery. The potency of the encapsulated drug is not affected by wide variations in the drug: lipid ratio.  相似文献   

3.
We have studied the liposome-mediated delivery of methotrexate-γ-aspartate to five cell lines. The sensitivity of the cells to encapsulated drug varies widely in accordance with their ability to take up the liposomes. CV1-P cells can be 150-times more sensitive to encapsulated methotrexate-γ-aspartate than to free drug, while AKR/J SL2 cells are only twice as sensitive to the encapsulated drug. Negatively-charged liposomes are much more efficient for delivery than are neutral liposomes, and cholesterol is an essential component of the liposome membrane for optimal drug delivery. The optimal liposome size for drug delivery is 0.1 μm, although the amount of cell-associated lipid is the same for all liposome sizes. The effect of the encapsulated drug is inhibited by NH4Cl, suggesting an endocytic mechanism for delivery. The potency of the encapsulated drug is not affected by wide variations in the drug:lipid ratio.  相似文献   

4.
Multilameller liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distributions of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome preparation. Liver uptake up encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides, regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

5.
The traditional mode of encapsulating drugs in liposomes poses risks to drug stability, especially when recognition agents are attached to the liposomal surface to obtain targeted liposomes. To reduce such risks, we devised a simple, novel method to entrap drugs in liposomes, consisting of (i) preparation and lyophilization of drug-free regular and surface-modified liposomes and (ii) drug encapsulation in the course of liposome reconstitution through rehydration in an aqueous solution of the drug. In this paper, we report physicochemical studies in which we compared regular and surface-modified liposomes made by this novel approach (denoted N-liposomes) to respective liposomes made by the traditional mode (denoted T-liposomes). The studies were performed with fluorescein, sucrose, histidine, mitomycin C (MMC), and chloramphenicol (CAM) encapsulated (each) in regular and in bioadhesive liposomes, the latter having hyaluronic acid as the surface-bound ligand. Our major findings are as follows: (1) The drug-specific encapsulation efficiencies spanning the range of 10-90% were, excepting sucrose, either similar in the N- and T-liposomes or better in the N- than in the T-liposomes, for both regular and bioadhesive liposomes. (2) For all liposome types and methods of preparation, fluorescein, histidine, and MMC did not adsorb to the liposomal surface. Sucrose and MMC did adsorb to the liposomal surface irrespective of the liposome preparation mode, sucrose favoring bioadhesive over regular liposomes and MMC having the opposite trend. (3) For both regular and bioadhesive liposomes, the mechanism of drug efflux from the N-liposomes was found to be governed by a single rate constant, as previously found for the T-liposomes. The magnitudes obtained, ranging from 3.5(+/-0.2) x 10(-3) to 400(+/-17) x 10(-3) h(-1), were always drug specific and occasionally also liposome type (i.e., regular or bioadhesive) specific. For MMC and CAM, the novel approach rendered liposomes with improved sustained release. The results reported here attest, overall, to the potential of this novel approach, meriting further investigations. Studies currently underway with MMC indicate N-liposomes also have functional advantages.  相似文献   

6.
Multilamellar liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distribution of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome prepartion. Liver uptake of encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from the liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

7.
We have studied the internalization of targeted fusogenic liposome content to leukemic T cells (CEM) in vitro. We describe a method for the covalent coupling of T101 antibody to the surface of liposomes and the incorporation of fusogenic viral protein into the liposome membrane. Hygromycin B, an impermeant inhibitor of protein synthesis, was encapsulated in the targeted fusogenic liposomes and delivered directly to the cytoplasm of leukemic T cells by fusion between the two membranes. The cytotoxic effect was measured by [3H]thymidine incorporation. We show that CEM are rapidly and specifically killed by the drug encapsulated in the targeted fusogenic liposomes. This effect is due to the binding of the liposome by means of the antibody and then to the fusion of the liposome with the targeted cell membrane, mediated by F protein.  相似文献   

8.
目的:应用超声波分散法制备脂质体阿霉素,并比较脂质体阿霉素与游离性阿霉素抗肿瘤活性。方法:以卵磷脂和胆固醇为原料,将阿霉素包封于脂质体中,采用超声分散法制备脂质体阿霉素,对其在290-700nm范围内进行紫外扫描,用SephedexG-50柱分离脂质体阿霉素并计算其包封率。以昆明种小鼠为载体建立肿瘤模型(S180型肉瘤)和细胞荧光染色法研究脂质体阿霉素的抗肿瘤活性,以ZITA SIZER3000型表面电位与粒度测定仪测定其粒径分布。结果:脂质体阿霉素在480nm处有最大吸收峰值,包封率达91.3%,细胞荧光染色显示,脂质体及游离型阿霉素均对S180细胞有明显的抑制作用。结论:此法制备的脂质体阿霉素包封率高,粒径分布集中,脂质体阿霉素较游离型阿霉素有较强的抗肿瘤活性剂及较低的细胞毒作用,对阿霉素的临床应用有一定的参考价值。  相似文献   

9.
Solid core liposomes with encapsulated colloidal gold particles were prepared through four major steps: Preparation of prevesicles with encapsulated solid cores of agarose-gelatin by emulsification of agarose-gelatin sol in organic solvent containing emulsifiers followed by cooling. Extraction of lipophilic components from prevesicles to obtain microspherules of agarose-gelatin. Introducing colloidal gold particles into microspherules and coating with protein molecules. Encapsulation of colloidal gold-bearing microspherules with the modified organic solvent spherule evaporation method for preparation of liposomes (Kim et al. (1983) Biochim. Biophys. Acta 728, 339-348 and Kim et al. (1984) Biochim. Biophys. Acta 812, 793-801). Electron micrographs showed that if liposomes were prepared by using a lipid mixture containing dioleoylphosphatidylcholine/cholesterol/dioleoylphosphatidylglycerol/tri olein (molar ratio 4.5:4.5:1:1), there was only a single continuous bilayer membrane for each solid core liposome. However, if no triolein was added to the lipid mixture, it would cause the formation of multilamellar liposomes. In both cases, there were hundreds to thousands of colloidal gold particles within each solid core liposome.  相似文献   

10.
Stability of dry liposomes in sugar glasses.   总被引:13,自引:0,他引:13       下载免费PDF全文
Sugars, particularly trehalose and sucrose, are used to stabilize liposomes during hydration (freeze-drying and air-drying). As a result, dry liposomes are trapped in a sugar glass, a supersaturated and thermodynamically unstable solid solution. We investigated the effects of the glassy state on liposome fusion and solute retention in the dry state. Solute leakage from dry liposomes was extremely slow at temperatures below the glass transition temperature (Tg); however, it increased exponentially as temperature increased to near or above the Tg, indicating that the glassy state had to be maintained for dry liposomes to retain trapped solutes. The leakage of solutes from dry liposomes followed the law of first-order kinetics and was correlated linearly with liposome fusion. The kinetics of solute leakage showed an excellent fit with the Arrhenius equation at temperatures both above and below the Tg, with a transitional break near the Tg. The activation energy of solute leakage was 1320 kJ/mol at temperatures above the Tg, but increased to 1991 kJ/mol at temperatures below the Tg. The stabilization effect of sugar glass on dry liposomes may be associated with the elevated energy barrier for liposome fusion and the physical separation of dry liposomes in the glassy state. The half-life of solute retention in dry liposomes may be prolonged by storing dry liposomes at temperatures below the Tg and by increasing the Tg of the dry liposome preparation.  相似文献   

11.
The kinetics of [14C]sucrose release from multilamellar liposomes of fixed diameter (approx. 0.23 μm) incubated in human plasma (serum and blood) were quantified. Composition was various ratios of phosphatidylcholine, phosphatidic acid and cholesterol with α-tocopherol included as antioxidant. Considerable intra-individual variability was noted for liposome stability in blood and its derived fluids, yet reproducible results were obtained for pooled samples. The destabilizing effects of plasma decreased with increasing lipid concentrations. Results of fitting a kinetic model to the data showed that four of five model parameters were linearly related to liposome cholesterol content. Liposomes depleted plasma of its destabilizing factors, and when pre-incubated with plasma were partially stabilized to the effects of a subsequent plasma addition. Plasma caused a rapid rise in liposome membrane permeability which then declined non-linearly, presumably because of a rearrangement of membrane lipids and adsorbed proteins to form their most stable configuration. the therapeutic availability of drugs administered encapsulated in liposomes, which can be governed by the kinetics of their in vivo extracellular release, may be directly proportional to - and predictable from - the time-course and extent of release in plasma. The kinetic model was used in conjuction with simple pharmacokinetic assumptions to show that the effectiveness of a liposome drug carrier cannot be predicted based simply on its plasma stability; more stable liposomes may not be more effective drug carriers. Interestingly, plasma-induced solute release from liposomes serendipitously mimics an important facet of ideal carrier behavior.  相似文献   

12.
The cultures of Nuttalia eque mainly develop in the reticuloendothelial organs and so in treatment of nuttaliosis in horses and the Nuttalia carriers diamidine, an analog of imidocarb or imidozoline, was used encapsulated in liposomes. The liposomes were prepared with a modification of the phase inversion method (the lipids were dissolved in a mixture of freon-11 and chloroform). The content of the organic solvents in the preparation, as evidenced by gas liquid chromatography, was less than 0.2 per cent. The main fraction consisted of particles 1.5 to 2.5 microns in diameter. The tests on animals of various species revealed a significant decrease in the toxicity of diamidine when used encapsulated in liposomes as compared to the use of the free diamidine. The LD50 of the liposome encapsulated diamidine administered intravenously and intramuscularly was for albino mice 52 and 6000 mg/kg, respectively whereas that of the free diamidine was 0.8 and 84 mg/kg, respectively. In a dose of 10 mg/kg administered intramuscularly the free diamidine induced death in 100 per cent of the horses while in a dose of 10 mg/kg the liposome encapsulated diamidine was satisfactorily tolerated by the animals. The liposome encapsulated diamidine had no unfavourable effect on hepatic antitoxic and metabolic functions. One should hope that the low toxicity of the liposome-encapsulated diamidine will provide its higher chemotherapeutic index.  相似文献   

13.
The enzymic activity of plant urease encapsulated into liposomes from egg lecithin was studied. Liposomes contained 3-5% of the initial enzymic preparation. Incorporation of urease into liposomes increases the permeability of the lecithin membrane for urea. The liposome membrane provides protection of the incorporated material from the inhibitory action of heavy metal ions. Kinetics of the reactions catalyzed by the free enzyme and encapsulated one is different. Km for the encapsulated enzyme is 1 X 10(-3) M and for free urease--4 X 10(-4) M, that is related to limited substrate mass transfer rate and as a result of it due to inhomogeneity of the catalysis proceeding in liposomes.  相似文献   

14.
We describe the use of saccharides, such as sorbitol, mannitol, sucrose, maltodextrin, and dextran, as cyoprotectants for freeze-drying cationic liposomes. Saccharides can protect liposomes either by interacting with phospholipid headgroups or by forming an amorphous glass surrounding the vesicles, thus preventing aggregation, mechanical rupture of membrane, fusion of liposomes, and drug leakage. We have particularly considered liposome characteristics, such as size, zeta potential, and ability in complexing DNA, before and after freeze-drying. Our study indicates that cationic liposomes are able to maintain liposome characteristics after lyophilization and rehydration and maintain the ability to complex DNA even if the strength of the interaction forces was of lower intensity with respect to liposomes before lyophilization.  相似文献   

15.
The effect of cholesterol in the liposome bilayer on the stability of incorporated retinol was studied. Retinol was incorporated into liposomes containing soybean phosphatidylcholine (PC) and cholesterol (CH) at various ratios, and the liposomes were prepared as multilamellar vesicles by the dehydration–rehydration method. Retinol readily incorporated into liposomes at a ratio of 0.01:1 (w/w) retinol:lipid, with over 94.52% being incorporated in all conditions studied. The incorporation efficiency of retinol increased slightly with increasing CH content in the liposome and with increasing pH of the hydration buffer. Average particle size increased as the CH content increased, and mean particle sizes at pH 5, 7, and 9 were 30.27, 89.53, and 41.42 µm, respectively. The time course of retinol degradation in aqueous solution in liposomes with various ratios of PC to CH was determined under a variety of pH conditions (pH 5, 7, and 9), and temperatures (4, 25, 37, and 50°C). The stability of incorporated retinol was enhanced by increasing the CH content. At pH 7.0 and 4°C, for example, 90.17% of the retinol in liposomes containing 50:50 (PC:CH) remained after 10 days of storage, whereas 51.46% remained at 100:0 (PC:CH). These results indicate that CH in liposomes greatly increases the incorporation efficiency of retinol and the stability of incorporated retinol.  相似文献   

16.
The DNA complexation and condensation properties of two established cationic liposome formulations, CDAN/DOPE (50:50, m/m; Trojene) and DC-Chol/DOPE (60:40, m/m), were investigated by using a combination of isothermal titration calorimetry (ITC), circular dichroism (CD), photon correlation spectroscopy (PCS), and turbidity assays. Plasmid DNA (7528 bp) was titrated with extruded liposomes (90 +/- 15 nm) and a thermodynamic profile established. ITC data revealed that the two liposome formulations differ substantially in their DNA complexation characteristics. Equilibrium dissociation constants for CDAN/DOPE (K(d) = 19 +/- 3 microM) and DC-Chol/DOPE liposomes (K(d) = 2 +/- 0.5 microM) were obtained by fitting the experimental data in a one-site binding model. Both CDAN/DOPE and DC-Chol/DOPE binding events take place with a negative binding enthalpy (DeltaH degrees = -0.5 and -1.7 kcal/mol, respectively) and increasing system entropy (TDeltaS = 6 +/- 0.3 and 6.2 +/- 0.3 kcal/mol, respectively). Interestingly, CDAN/DOPE liposomes undergo substantial rehydration and protonation prior to complexation with pDNA, which is observed as two discrete exothermic signals during titration. No such biphasic effects are seen with respect to the binding between DC-Chol/DOPE and pDNA that appears to be otherwise instantaneous with no rehydration effects. The rehydration and protonation characteristics of CDAN/DOPE liposomes in comparison with those of DC-Chol/DOPE cationic liposomes are confirmed by ITC; CDAN/DOPE liposomes have strongly exothermic dilution characteristics and DC-Chol/DOPE liposomes only mildly endothermic characteristics. Furthermore, analysis of cationic liposome-pDNA binding by CD spectroscopy reveals that CDAN/DOPE-pDNA lipoplexes are more structurally fluid than DC-Chol/DOPE-pDNA lipoplexes. CDAN/DOPE liposomes induced considerable fluctuation in the DNA structure for at least 60 min, whereas liposomes obtained from DC-Chol/DOPE lack the same effect on the DNA structure. Turbidity studies show that DC-Chol/DOPE lipoplexes exhibit greater resistance to serum than CDAN/DOPE lipoplexes, which showed substantial precipitation after incubation for 100 min with serum. Transfection studies on HeLa and Panc-1 cells reveal that CDAN/DOPE lipoplexes are superior in efficacy to DC-Chol/DOPE lipoplexes. CDAN/DOPE liposomes tend to transfect best in normal growth medium (including 10% serum and antibiotics), whereas DC-Chol/DOPE lipoplexes transfect best under serum free transfection conditions.  相似文献   

17.
Untargeted liposomes (composition: PC-PS-cholesterol) and targeted liposomes (composition: PC-PS-cholesterol-lactosylceramide) having encapsulated concentration-quenched carboxyfluorescein were injected intravenously into mice. 1 h after injection, the mice livers were perfused, excised and the hepatocytes were separated from nonparenchymal cells and analysed in a fluorescence-activated cell sorter analyzer. The result was that hepatocytes took up significantly more liposomes when lactosylceramide was inserted in the liposome bilayers, which was in good agreement with observations made on the in vivo uptake of liposome-encapsulated insulin gene (Soriano, P. et al. (1983) Proc. Natl. Acad. Sci. USA, 80, 7128-7133). Cytofluorimetric analysis of the spleen cells showed that approx. 10% of the splenic lymphocytes take up high amounts of lactosylceramide liposomes, whereas most of the phospholipid liposomes are taken up by the phagocytic cells. The flow cytofluorimetric analysis shows, moreover, the internalization of the liposomes by the target cells and allows a quantitation of this uptake. Thus, in vivo targeting of the liposomes to specific liver and splenic cells, by means of glycolipid insertion in the liposome bilayer, is shown to take place with delivery of the liposomal aqueous space marker to these cells.  相似文献   

18.
D V Kalvakolanu  A Abraham 《BioTechniques》1991,11(2):218-22, 224-5
Antibodies specific to avian myeloblastosis virus envelope glycoprotein gp80 were raised. Immunoliposomes were prepared using anti-avian myeloblastosis virus envelope glycoprotein gp80 antibody. The antibody was palmitoylated to facilitate its incorporation into lipid bilayers of liposomes. The fluorescence emission spectra of palmitoylated IgG have exhibited a shift in emission maximum from 330 to 370 nm when it was incorporated into the liposomes. At least 50% of the incorporated antibody molecules were found to be oriented towards the outside in the liposomes. The average size of the liposome was found to be 300 A, and on an average, 15 antibody molecules were shown to be present in a liposome. When adriamycin encapsulated in immunoliposomes was incubated in a medium containing serum for 72 h, about 75% of the drug was retained in liposomes. In vivo localization studies, revealed an enhanced delivery of drug encapsulated in immunoliposomes to the target tissue, as compared to free drug or drug encapsulated in free liposomes. These data suggest a possible use of the drugs encapsulated in immunoliposomes to deliver the drugs in target areas, thereby reducing side effects caused by antiviral agents.  相似文献   

19.
Arsenic trioxide liposomes: encapsulation efficiency and in vitro stability   总被引:2,自引:0,他引:2  
The use of arsenic-containing compounds in cancer therapy is currently being re-considered, after the recent approval of arsenic trioxide (Trisenox) for the treatment of relapsed promyelocytic leukemia (PML). In an attempt to prepare a carrier system to minimize the toxicity of this drug, the aim of this study is to prepare and characterize liposomes encapsulating arsenic trioxide (ATO). For this, we prepared different types of liposomes entrapping ATO: large multilamellar (MLV), sonicated (SUV) and dried reconstituted vesicles (DRV). The techniques used were: thin film hydration, sonication and the DRV method, respectively. Two lipid compositions were studied for each liposome type, EggPC/Chol (1:1) and DSPC/Chol (1:1). After liposome preparation, drug encapsulation was evaluated by measuring arsenic in liposomes. For this, energy-dispersive X-ray fluorescence spectroscopy or atomic absorption was used. In addition, the retention of the drug in the liposomes was evaluated after incubating the liposomes in buffer at 37 degrees C. The experimental results reveal that encapsulation of ATO in liposomes ranges between 0.003 and 0.506 mol/ mol of lipid, and is highest in the DRV vesicles and lowest in the small unilamellar vesicles, as anticipated. Considering the in vitro stability of ATO-encapsulating liposomes: 1) For the PC/Chol liposomes (DRV and MLV), after 24 hours of incubation, more than 70% (or 90% in some cases) of the initially encapsulated amount of ATO was released. 2) The liposomes composed of DSPC/Chol could retain substantially higher amounts of ATO, especially the DRV liposomes (54% retained after 24 h). 3) In the case of PC/Chol, temperature of incubation has no effect on the ATO release after 24 hours, but affects the rate of ATO release in the MLV liposomes, while for the DSPC/Chol liposomes there is a slight increase (statistically insignificant) of ATO release at higher temperature.  相似文献   

20.
A chromatographic method for the determination of association constants of rapidly dissociable complexes is described and applied to quantification of liposome/saline partition coefficients using gel chromatography. The approach allows for estimation of the free solute concentration in the sample by simple manual processing of the intact right-hand part of the solute peak deformed due to gradual diffusion of the accumulated solute from the liposomes along the separation column. Validity of the procedure was confirmed by both reasonable agreement with equilibrium dialysis data and model-based deconvolution of the distorted peak into its two components corresponding to initially unbound compound and to that escaped from the liposomes during the separation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号