首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of l-ascorbic acid and dehydro-l-ascorbic acid into renal cortical basolateral membrane vesicles has been characterized. The uptake systems for both solutes demonstrate saturation kinetics. The presence of structural analogs of l-ascorbic acid and dehydro-l-ascorbic acid results in cis-inhibition and trans-stimulation. Uptake of each substrate is Na+-independent, proceeding to an endpoint of substrate equilibrium across the vesicular membrane. The transport mechanism(s) for l-ascorbic acid and dehydro-l-ascorbic acid appears to be facilitated diffusion.  相似文献   

2.
A membrane preparation enriched in the brush-border component of the plasma membrane was isolated from rat renal superficial cortex by a divalent cation precipitation procedure. Uptake of dehydro-l-ascorbic acid, the oxidized form of l-ascorbic acid, by the brush-border membrane vesicles was studied. The uptake mechanism was found to be sodium-independent and insensitive to the trans-membrane electrical potential difference. Uptake was saturable and subject to cis-inhibition. Concentrative uptake was demonstrated only under conditions of trans-stimulation by structural analogs. The results suggest a mechanism of facilitated diffusion for the uptake of dehydro-l-ascorbic acid in renal brush-border membranes.  相似文献   

3.
l-Ascorbic acid-1-(14)C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants.  相似文献   

4.
l-Ascorbic acid-[UL-14C] has been used to follow the appearance of 14C-labeled oxalic acid and tartaric acid as metabolic products of oxidative cleavage of ascorbic acid in geranium apices (Pelargonium crispum). The enantiomeric specificity of ascorbic acid metabolism was established in geranium by comparing the incorporation of d- and l-ascorbic acid-[6-14C] in the presence of l-ascorbic acid-[4-3H]. l-Ascorbic acid-[4-3H] has been used to demonstrate the retention of 3H during biosynthesis of l-(+)-tartaric acid in the geranium and its exchange with water during biosynthesis of l-( +)-tartaric acid in the grape.  相似文献   

5.
A simple, three-step conversion of 1,2-O-isopropylidene-α-d-glucofuranose into l-ascorbic acid, originally described by Bakke and Theander, was used to prepare l-[4-14C]ascorbic acid from milligram amounts of d-[3-14C]glucopyranose in 28% radioisotopic yield. In addition, l-[6-14C]- and l-[U-14C]-ascorbic acid were prepared from d-[1-14C]- and d-[U-14C]-glucopyranose, respectively. The procedure is useful for the synthesis of l-ascorbic acid bearing isotopic hydrogen, carbon, or oxygen atoms at specific positions, subject only to the availability of starting material.  相似文献   

6.
l-Ascorbyl laurate is a fatty acid derivative of l-ascorbic acid which can be widely used as a natural antioxidant in both lipid containing food and cosmetic applications. To avoid any possible harmful effects from chemically synthesized product, the enzymatic synthesis appears to be the best way to satisfy the consumer demand for natural antioxidants. The ability of immobilized lipase from Candida antarctica (Novozym® 435) to catalyze the direct esterification between l-ascorbic acid and lauric acid was investigated. Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (2–10 h), temperature (25–65 °C), enzyme amount (10–50% w/w of l-ascorbic acid), and substrate molar ratio of l-ascorbic acid to lauric acid (1:1–1:5) on percentage molar conversion to l-ascorbyl laurate. Based on the analysis result of ridge max, the optimal enzymatic synthesis conditions were predicted as follows: reaction time 6.7 h, temperature 30.6 °C, enzyme amount 34.5%, substrate molar ratio 1:4.3; and the optimal actual yield was 93.2%.  相似文献   

7.
In human, vitamin C (l-ascorbic acid) is an essential micronutrient required for an array of biological functions including enzymatic reactions and antioxidation. We describe here the molecular cloning of a novel human cDNA encoding a vitamin C transporter SVCT1. SVCT1 is largely confined to bulk-transporting epithelia (e.g., kidney and small intestine) with a putative alternative-splice product present in thymus. Applying radiotracer and voltage-clamp approaches in cRNA-injected Xenopus oocytes, we found that SVCT1 mediates saturable, concentrative, high-affinity l-ascorbic acid transport (K(0.5) = 50-100 microM) that is electrogenic and can be inhibited by phloretin. SVCT1 displays exquisite substrate selectivity, greatly favoring l-ascorbic acid over its isomers d-isoascorbic acid and dehydroascorbic acid and 2- or 6-substituted analogues, whereas glucose and nucleobases are excluded. We have mapped the SLC23A2 gene (coding for SVCT1) to human chromosome 5 in band 5q31.2-31.3, within a region commonly deleted in malignant myeloid (leukemia) diseases. In addition, we have demonstrated that the human SLC23A1 gene product is a related high-affinity l-ascorbic acid transporter (SVCT2) that is widely distributed in brain, retina, and a host of endocrine and neuroendocrine tissues. The molecular identification of the human l-ascorbic acid transporters now provides the tools with which to investigate their roles in vitamin C metabolism in health and disease.  相似文献   

8.
Enzymatic esterification of bixin by l-ascorbic acid   总被引:2,自引:0,他引:2  
Bixin, a carotenoid, was esterified by l-ascorbic acid using immobilized lipase B from Candida antarctica. The conversion of l-ascorbic acid was 25% under atmospheric pressure. Ester production was twice higher when working under reduced pressure and was third lower when norbixin was used as a substrate-acyl donor due to lipase specificity, leading to a conversion of l-ascorbic acid of 50% and 8%, respectively.  相似文献   

9.
10.
Testosterone induced a rapid (<1 min) stimulation of endocytosis, amino acid and hexose transport, measured by the temperature-sensitive uptake of HRP, 14C-AIB and 3H-DG, in mouse kidney cortex slices. The hormonal increment in uptake persisted for at least 60–120 min, showed time-, energy-, and Na+-dependence, and varied with substrate and testosterone concentration. Testosterone was maximally effective at 10?8 to 10?7 M. Peroxidase histochemistry indicated that the hormonal increase in HRP uptake is restricted to proximal tubules. Testosterone was more effective than DHT, whereas cyproterone acetate, androsterone and dexamethasone had little or no stimulating effect on this uptake. Kidney slices from androgen-insensitive tfmY mice did not respond to testosterone. The rapid increase in endocytosis, amino acid and hexose transport may represent a direct, receptor-mediated response of the surface membrane of target cells to testosterone.  相似文献   

11.
With L-glutamine, as a representative amino acid this study was undertaken to examine the effects of substrate concentrations on initial and equilibrium amino acid uptake and intravesicular volume determined with porcine jejunal brush border membrane vesicles prepared by Mg2+-aggregation and differential centrifugation. Transport measurements (24 degrees C) were conducted by the rapid filtration manual procedure. Glutamine uptake was shown to occur into an osmotically-active space ranging between 1.09-1.58 microl/mg protein with little non-specific membrane binding. At different concentrations (in parentheses), the duration of initial glutamine uptake in both Na+ gradient and Na+-free conditions was 10 s (0.01 mM), 15 s (0.17 mM), and 20 s (1.9 and 9.4 mM), respectively. Substrate concentrations affected the duration of initial uptake, with lower substrate concentrations giving shorter duration for initial amino acid uptake. At different substrate concentrations (in parentheses), the time required to reach equilibrium glutamine uptake was 5 min (0.01 mM), 10 min (0.17 mM), and 60 min (1.9 and 9.4 mM), respectively. Thus, substrate concentrations also affected the time required to reach equilibrium uptake. The higher the substrate concentration, the longer the incubation time needed to reach equilibrium amino acid uptake. At the glutamine concentrations of 0.01, 0.17, 1.9, and 9.4 mM, the average intravesicular volume was estimated to be 1.58+/-0.21, 1.09+/-0.28, 1.24+/-0.18, and 1.36+/-0.21 microl/mg protein, respectively. Substrate concentrations had no effect (p>0.05) on the intravesicular volume of membrane vesicles. In conclusion, in the experiments on amino acid transport kinetics measured with the rapid filtration manual procedure, the incubation time used for measuring the initial uptake rate should be determined from the time course experiments conducted at the lowest substrate concentration used, whereas the intravesicular volume can be obtained from equilibrium uptake measured at any substrate concentrations.  相似文献   

12.
Kinetics and thermodynamics of lipase-catalyzed esterification of l-ascorbic acid in acetone were investigated by using vinyl acetate as acyl donor. The results showed that l-ascorbic acid could generate inhibition effect on lipase activity. A suitable model, Ping-Pong Bi-Bi mechanism having substrate inhibition, was thus introduced to describe the enzymatic kinetics. Furthermore, the kinetic and thermodynamic parameters were calculated from a series of experimental data according to the kinetic model. The inhibition constant of l-ascorbic acid was also obtained, which seemed to imply that enhancing reaction temperature could depress the substrate inhibition. Besides, the activation energy values of the first-step and the second-step reaction were estimated to be 37.31 and 4.94 kJ/mol, respectively, demonstrating that the first-step reaction was the rate-limiting reaction and could be easily improved by enhancing temperature.  相似文献   

13.
The membrane potential of Lemna gibba G1 was measured with a microelectrode; glucose and glycine uptake were measured with 14C-labeled substances. The membrane potential was increased by 85 mV on the average, after the plants had been pretreated with 10 M abscisic acid (ABA) for more than 30 min. This effect is not linked to the endogenous level of soluble sugars. The concentration of these soluble sugars was increased to more than 200% by pretreatment of the plants with ABA, however, the respiration of the plants was not affected. ABA stimulated uptake of glucose and glycine. Glucose- and glycine-dependent depolarization and repolarization of the membrane was altered: depolarization was less and repolarization was slower; during uptake of glycine, the first typical phase of repolarization was suppressed. The data suggest that ABA interferes with the primary steps of substrate uptake.Abbreviations ABA abscisic acid - FW fresh weight - IAA indole acetic acid - pd membrane potential difference - 1× perfusing solution (see methods) - H+ electrochemical proton gradient - pd solute-induced maximum depolarization of the membrane  相似文献   

14.
Abstract Roots of sterile-grown, intact 6-day-old seedlings of Ricinus communis possess at least two independent active amino acid uptake systems, one for neutral and one for basic amino acids. The kinetics of uptake of L-proline and L-arginine, which were taken as representative substrates for the two systems, are biphasic. At low concentrations (0.01–0.5 mol m?3) Michaelis -Menten kinetics prevail, changing to a linear concentration dependence at higher substrate concentrations (1–50 mol m?3). L-glutamate uptake velocity is linear over the whole substrate concentration range. For comparison the uptake kinetics of nitrate and ammonium were determined as well as interactions among the different nitrogen sources. The Km value for nitrate uptake was 0.4 mol m?3, and for ammonium 0.1 mol m?3. The uptake capacity for nitrate or ammonium was approximately the same as for amino acids. The interaction between the uptake systems for organic and inorganic nitrogen is small. Two hypotheses for the physiological significance of amino acid uptake by roots were considered: (i) Uptake of amino acids from the soil-determination of amino acids in soil and in soil water indicates that they might contribute 15–25% to the nitrogen nutrition of the plant. (ii) Amino acid uptake systems of root cells serve primarily as retrieval of amino acids delivered from the phloem- it was found that 14C L-glutamine, which was delivered to the cotyledon and transported to the root via the phloem, was not lost by the roots, whereas it appeared in the bathing medium if L-glutamine was applied externally to the root to compete for the uptake sites; this suggests that an apoplastic pool of amino acids in the root exists due to their efflux from the phloem.  相似文献   

15.
A mathematical model for amino acid uptake by membrane vesicles is described which includes two components, a Na+ dependent and a Na+ independent system. Uptake in the model is a function of both initial external Na+ and amino acid concentrations. Sodium dependence of amino acid transport in the model is manifested by changing affinity constants for amino acid uptake under different Na+ concentrations. The differing affinities for influx and efflux caused by increasing internal Na+ concentrations with time during transport incubations result in an “overshoot” for amino acid accumulation. For inwardly directed Na+ gradients, the model predicts the dependence of the occurrence of the overshoot on initial external substrate concentration and the dependence of the height of the overshoot on initial external Na+ concentration. This model has been used to describe experimental data on proline uptake by rat renal brushborder membrane vesicles.  相似文献   

16.
Analysis of phloem exudates from the fruit of Cucurbitaceae revealed the presence of several compounds with UV-visible absorption spectra identical to that of l-ascorbic acid. In Cucurbita pepo L. (zucchini), the compounds could be isolated from phloem exudates collected from aerial parts of the plant but were not detected in whole tissue homogenates. The compounds isolated from the phloem exudates of C. pepo fruit were eluted from strong anion exchange resin in the same fraction as l-ascorbic acid and were oxidised by ascorbate oxidase (E.C. 1.10.3.3). The major compound purified from C. pepo fruit exudates demonstrated similar redox properties to l-ascorbic acid and synthetic 6-O-glucosyl-l-ascorbic acid (6-GlcAsA) but differed from those of 2-O-glucosyl-l-ascorbic acid (2-GlcAsA) isolated from the fruit of Lycium barbarum L. Parent and fragment ion masses of the compound were consistent with hexosyl-ascorbate in which the hexose moiety was attached to C5 or C6 of AsA. Acid hydrolysis of the major C. pepo compound resulted in the formation of l-ascorbic acid and glucose. The purified compound yielded a proton NMR spectrum that was almost identical to that of synthetic 6-GlcAsA. A series of l-ascorbic acid conjugates have, therefore, been identified in the phloem of Cucurbitaceae and the most abundant conjugate has been identified as 6-GlcAsA. The potential role of such conjugates in the long-distance transport of l-ascorbic acid is discussed.  相似文献   

17.
CATs,a family of three distinct mammalian cationic amino acid transporters   总被引:2,自引:0,他引:2  
E. I. Closs 《Amino acids》1996,11(2):193-208
Summary Three related mammalian carrier proteins that mediate the transport of cationic amino acids through the plasma membrane have been identified in murine and human cells (CAT for cationic amino acid transporter). Models of the CAT proteins in the membrane suggest they have 12 or 14 transmembrane domains connected by short hydrophilic loops and intracellular N- and C-termini. The transport activity of the CAT proteins is sensitive to trans-stimulation and independent of the presence of sodium ions. These features agree with the behaviour of carrier proteins mediating facilitated diffusion. The three CAT proteins, CAT-1, CAT-2A and CAT-2(B) are encoded by two different genes (CAT-1 and CAT-2). CAT-1 and CAT-2(B) exhibit transport properties consistent with system y+, the principal mechanism for cellular uptake of cationic amino acids. In contrast, CAT-2A has tenfold lower substrate affinity, greater apparent maximal velocity and it is much less sensitive to trans-stimulation. In addition to structural and functional aspects, this review discusses the role of the CAT proteins for supplying substrate to NO synthases and the property of the rodent CAT-1 proteins to function as virus receptors.Abbreviations CAT cationic amino acid transporter - m mouse - h human - r rat - Tea T cell early activation protein - CAA cationic amino acids - TM transmembrane spanning domain - rBAT related to b0,+ amino acid transporter - 4F2hc 4F2 heavy chain cell surface antigen - MuLV murine leukemia viruses - Km Michaelis Menten constant  相似文献   

18.
Sanz A  Ullrich CI 《Plant physiology》1989,90(4):1532-1537
The uptake of acidic and basic sugar derivatives in Lemna gibba L. was studied. Uronic acids applied to the experimental solution (50 millimolar) induced a small decrease of the membrane potential (10 ± 1 millivolt galacturonic acid, and 20 ± 4 millivolt glucuronic acid). After incubation of the plants in a 0.1 millimolar solution of these substrates, no decrease in the concentration of reducing groups in the external solution was detected. Respiration increased by 31% with 50 millimolar galacturonic acid, whereas no effect was found with the same concentration of glucuronic acid. Glucosamine caused a considerable concentration-dependent membrane depolarization. (14C)glucosamine uptake followed Michaelis-Menten kinetics together with a linear component. Influx of this substrate was inhibited by glucose but the type of competition could not be clearly distinguished. Glucosamine, 50 millimolar, inhibited the respiration rate by 30%. The glucosamine uptake was pH-dependent, with maximum uptake at around pH 7. Lack of enhancement of uptake by low pH as well as the permanent membrane depolarization suggest a uniport mechanism for the charged species of the substrate and an electroneutral diffusion of the uncharged species.  相似文献   

19.
We redirect attention to contributions to the energization of the active transport of amino acids in the Ehrlich cell, beyond the known energization by down-gradient comigration of Na+, beyond possible direct energization by coupling to ATP breakdown, and beyond known energization by exchange with prior accumulations of amino acids. We re-emphasize the uphill operation of System L, and by prior depletion of cellular amino acids show that this system must receive energy beyond that made available by their coupled exodus. After this depletion the Na+-independent accumulation of the norbornane amino acid, 2-aminobicycloheptane-2-carboxylic acid becomes strongly subject to stimulation by incubation with glucose. Energy transfer between Systems A and L through the mutual substrate action of ordinary amino acids was minimized although not entirely avoided by the use of amino acid analogs specific to each system.When 2,4-dinitrophenol was included in the depleting treatment, and pyruvate, phenazine methosulfate, or glucose used for restoration, recovery of uptake of the norbornane amino acid was independent of external Na+ or K+ levels. Restoration of the uptake of 2-(methylamino)isobutyric acid was, however, decreased by omission of external K+. Contrary to an earlier finding, restoration of uptake of each of these amino acids was associated with distinct and usually correlated rises in cellular ATP levels. ATP addition failed to stimulate exodus of the norbornane amino acid from plasma membrane vesicles, although either NADH or phenazine methosulfate did stimulate exodus. ATP production and use is thus associated with transport energization, although evidence for a direct role failed to appear.  相似文献   

20.
We recently identified a microbial conversion of l-ascorbic acid (AsA) to l-erythroascorbic acid (eAsA), a five-carbon analog of AsA. In this paper, we show that ubiquitin plays a crucial role in this process. Based on an assay that determined AsA decomposition, we purified proteins that had N-terminal amino acid sequences identical to that of yeast ubiquitin. Purified ubiquitin facilitated decompositions of AsA and dehydro-AsA, accompanying a partial conversion to eAsA through C1-elimination. Acetylation or limited hydrolysis of ubiquitin abolished its activity. A mutant ubiquitin, with Lys6 replaced by Arg, completely lost activity, whereas a mutant, with six other Lys residues (positions at 11, 27, 29, 33, 48 and 63) substituted by Arg, retained activity. Thus, Lys6, which locates in close proximity to His68, is crucial for ubiquitin activity in the AsA conversion to eAsA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号