共查询到20条相似文献,搜索用时 0 毫秒
1.
Harish Kumar Jayant B. Udgaonkar 《Protein science : a publication of the Protein Society》2021,30(4):785
Amyloid fibrillar aggregates isolated from the brains of patients with neurodegenerative diseases invariably have post‐translational modifications (PTMs). The roles that PTMs play in modulating the structures and polymorphism of amyloid aggregates, and hence their ability to catalyze the conversion of monomeric protein to their fibrillar structure is, however, poorly understood. This is particularly true in the case of tau aggregates, where specific folds of fibrillar tau have been implicated in specific tauopathies. Several PTMs, including acetylation at Lys 280, increase aggregation of tau in the brain, and increase neurodegeneration. In this study, tau‐K18 K280Q, in which the Lys 280 → Gln mutation is used to mimic acetylation at Lys 280, is shown, using HX‐MS measurements, to form fibrils with a structural core that is longer than that of tau‐K18 fibrils. Measurements of critical concentrations show that the binding affinity of monomeric tau‐K18 for its fibrillar counterpart is only marginally more than that of monomeric tau‐K18 K280Q for its fibrillar counterpart. Quantitative analysis of the kinetics of seeded aggregation, using a simple Michaelis–Menten‐like model, in which the monomer first binds and then undergoes conformational conversion to β‐strand, shows that the fibrils of tau‐K18 K280Q convert monomeric protein more slowly than do fibrils of tau‐K18. In contrast, monomeric tau‐K18 K280Q is converted faster to fibrils than is monomeric tau‐K18. Thus, the effect of Lys 280 acetylation on tau aggregate propagation in brain cells is expected to depend on the amount of acetylated tau present, and on whether the propagating seed is acetylated at Lys 280 or not. 相似文献
2.
Chloe Martens Argyris Politis 《Protein science : a publication of the Protein Society》2020,29(6):1285-1301
Integral membrane proteins (IMPs) control countless fundamental biological processes and constitute the majority of drug targets. For this reason, uncovering their molecular mechanism of action has long been an intense field of research. They are, however, notoriously difficult to work with, mainly due to their localization within the heterogeneous of environment of the biological membrane and the instability once extracted from the lipid bilayer. High‐resolution structures have unveiled many mechanistic aspects of IMPs but also revealed that the elucidation of static pictures has limitations. Hydrogen–deuterium exchange coupled to mass spectrometry (HDX‐MS) has recently emerged as a powerful biophysical tool for interrogating the conformational dynamics of proteins and their interactions with ligands. Its versatility has proven particularly useful to reveal mechanistic aspects of challenging classes of proteins such as IMPs. This review recapitulates the accomplishments of HDX‐MS as it has matured into an essential tool for membrane protein structural biologists. 相似文献
3.
Helen T. Hobbs Neel H. Shah Jean M. Badroos Christine L. Gee Susan Marqusee John Kuriyan 《Protein science : a publication of the Protein Society》2021,30(12):2373
The catalytic activity of Syk‐family tyrosine kinases is regulated by a tandem Src homology 2 module (tSH2 module). In the autoinhibited state, this module adopts a conformation that stabilizes an inactive conformation of the kinase domain. The binding of the tSH2 module to phosphorylated immunoreceptor tyrosine‐based activation motifs necessitates a conformational change, thereby relieving kinase inhibition and promoting activation. We determined the crystal structure of the isolated tSH2 module of Syk and find, in contrast to ZAP‐70, that its conformation more closely resembles that of the peptide‐bound state, rather than the autoinhibited state. Hydrogen–deuterium exchange by mass spectrometry, as well as molecular dynamics simulations, reveal that the dynamics of the tSH2 modules of Syk and ZAP‐70 differ, with most of these differences occurring in the C‐terminal SH2 domain. Our data suggest that the conformational landscapes of the tSH2 modules in Syk and ZAP‐70 have been tuned differently, such that the autoinhibited conformation of the Syk tSH2 module is less stable. This feature of Syk likely contributes to its ability to more readily escape autoinhibition when compared to ZAP‐70, consistent with tighter control of downstream signaling pathways in T cells. 相似文献
4.
The centriole is a ninefold symmetrical structure found at the core of centrosomes and, as a basal body, at the base of cilia, whose conserved duplication is regulated by Plk4 kinase. Plk4 phosphorylates a single serine residue at the N-terminus of Ana2 to promote Ana2''s loading to the site of procentriole formation. Four conserved serines in Ana2''s STAN motif are then phosphorylated by Plk4, enabling Sas6 recruitment. Crystallographic data indicate that the coiled–coil domain of Ana2 forms a tetramer but the structure of full-length Ana2 has not been solved. Here, we have employed hydrogen–deuterium exchange coupled with mass spectrometry (HDX-MS) to uncover the conformational dynamics of Ana2, revealing the high flexibility of this protein with one rigid region. To determine the elusive nature of the interaction surfaces between Ana2 and Sas6, we have confirmed complex formation between the phosphomimetic form of Ana2 (Ana2-4D) and Sas6 in vitro and in vivo. Analysis of this complex by HDX-MS identifies short critical regions required for this interaction, which lie in the C-terminal parts of both proteins. Mutational studies confirmed the relevance of these regions for the Ana2–Sas6 interaction. The Sas6 site required for Ana2 binding is distinct from the site required for Sas6 to bind Gorab and Sas6 is able to bind both these protein partners simultaneously. 相似文献
5.
Izabela Rutkowska-Wlodarczyk Borys Kierdaszuk Jakub Wlodarczyk 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(4):891-898
Mass spectrometry is used to probe the kinetics of hydrogen–deuterium exchange in lysozyme in pH 5, 6 and 7.4. An analysis based on a Verhulst growth model is proposed and effectively applied to the kinetics of the hydrogen exchange. The data are described by a power-like function which is based on a time-dependence of the exchange rate. Experimental data ranging over many time scales is considered and accurate fits of a power-like function are obtained. Results of fittings show correlation between faster hydrogen–deuterium exchange and increase of pH. Furthermore a model is presented that discriminates between easily exchangeable hydrogens (located in close proximity to the protein surface) and those protected from the exchange (located in the protein interior). A possible interpretation of the model and its biological significance are discussed. 相似文献
6.
Anna Schaefer Dalia Naser Bruna Siebeneichler Michael V. Tarasca Elizabeth M. Meiering 《The Journal of biological chemistry》2022,298(9)
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system. 相似文献
7.
Scott E. Boyken Nikita Chopra Qian Xie Raji E. Joseph Thomas E. Wales D. Bruce Fulton John R. Engen Robert L. Jernigan Amy H. Andreotti 《Journal of molecular biology》2014
Despite high level of homology among non-receptor tyrosine kinases, different kinase families employ a diverse array of regulatory mechanisms. For example, the catalytic kinase domains of the Tec family kinases are inactive without assembly of the adjacent regulatory domains, whereas the Src kinase domains are autoinhibited by the assembly of similar adjacent regulatory domains. Using molecular dynamics simulations, biochemical assays, and biophysical approaches, we have uncovered an isoleucine residue in the kinase domain of the Tec family member Btk that, when mutated to the closely related leucine, leads to a shift in the conformational equilibrium of the kinase domain toward the active state. The single amino acid mutation results in measureable catalytic activity for the Btk kinase domain in the absence of the regulatory domains. We suggest that this isoleucine side chain in the Tec family kinases acts as a “wedge” that restricts the conformational space available to key regions in the kinase domain, preventing activation until the kinase domain associates with its regulatory subunits and overcomes the energetic barrier to activation imposed by the isoleucine side chain. 相似文献
8.
Joomi Ahn Min-Jie Cao Ying Qing Yu John R. Engen 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(6):1222-1229
The aspartic protease pepsin is less specific than other endoproteinases. Because aspartic proteases like pepsin are active at low pH, they are utilized in hydrogen deuterium exchange mass spectrometry (HDX MS) experiments for digestion under hydrogen exchange quench conditions. We investigated the reproducibility, both qualitatively and quantitatively, of online and offline pepsin digestion to understand the compliment of reproducible pepsin fragments that can be expected during a typical pepsin digestion. The collection of reproducible peptides was identified from > 30 replicate digestions of the same protein and it was found that the number of reproducible peptides produced during pepsin digestion becomes constant above 5–6 replicate digestions. We also investigated a new aspartic protease from the stomach of the rice field eel (Monopterus albus Zuiew) and compared digestion efficiency and specificity to porcine pepsin and aspergillopepsin. Unique cleavage specificity was found for rice field eel pepsin at arginine, asparagine, and glycine. Different peptides produced by the various proteases can enhance protein sequence coverage and improve the spatial resolution of HDX MS data. This article is part of a Special Issue entitled: Mass spectrometry in structural biology. 相似文献
9.
MarieLouise R Francis Melissa N Webby Nicholas G Housden Renata Kaminska Emma Elliston Boonyaporn Chinthammit Natalya Lukoyanova Colin Kleanthous 《The EMBO journal》2021,40(21)
Bacteria deploy weapons to kill their neighbours during competition for resources and to aid survival within microbiomes. Colicins were the first such antibacterial system identified, yet how these bacteriocins cross the outer membrane (OM) of Escherichia coli is unknown. Here, by solving the structures of translocation intermediates via cryo‐EM and by imaging toxin import, we uncover the mechanism by which the Tol‐dependent nuclease colicin E9 (ColE9) crosses the bacterial OM. We show that threading of ColE9’s disordered N‐terminal domain through two pores of the trimeric porin OmpF causes the colicin to disengage from its primary receptor, BtuB, and reorganises the translocon either side of the membrane. Subsequent import of ColE9 through the lumen of a single OmpF subunit is driven by the proton‐motive force, which is delivered by the TolQ‐TolR‐TolA‐TolB assembly. Our study answers longstanding questions, such as why OmpF is a better translocator than OmpC, and reconciles the mechanisms by which both Tol‐ and Ton‐dependent bacteriocins cross the bacterial outer membrane. 相似文献
10.
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism. 相似文献
11.
Daniel Pokorny Linda Truebestein Kaelin D. Fleming John E. Burke Thomas A. Leonard 《The Journal of biological chemistry》2021,297(2)
Serum- and glucocorticoid-regulated kinase 3 (Sgk3) is a serine/threonine protein kinase activated by the phospholipid phosphatidylinositol 3-phosphate (PI3P) downstream of growth factor signaling via class I phosphatidylinositol 3-kinase (PI3K) signaling and by class III PI3K/Vps34-mediated PI3P production on endosomes. Upregulation of Sgk3 activity has recently been linked to a number of human cancers; however, the precise mechanism of activation of Sgk3 is unknown. Here, we use a wide range of cell biological, biochemical, and biophysical techniques, including hydrogen–deuterium exchange mass spectrometry, to investigate the mechanism of activation of Sgk3 by PI3P. We show that Sgk3 is regulated by a combination of phosphorylation and allosteric activation. We demonstrate that binding of Sgk3 to PI3P via its regulatory phox homology (PX) domain induces large conformational changes in Sgk3 associated with its activation and that the PI3P-binding pocket of the PX domain of Sgk3 is sequestered in its inactive conformation. Finally, we reconstitute Sgk3 activation via Vps34-mediated PI3P synthesis on phosphatidylinositol liposomes in vitro. In addition to identifying the mechanism of Sgk3 activation by PI3P, our findings open up potential therapeutic avenues in allosteric inhibitor development to target Sgk3 in cancer. 相似文献
12.
Severin Schink Constantin Ammar YuFang Chang Ralf Zimmer Markus Basan 《Molecular systems biology》2022,18(12)
Bacteria reorganize their physiology upon entry to stationary phase. What part of this reorganization improves starvation survival is a difficult question because the change in physiology includes a global reorganization of the proteome, envelope, and metabolism of the cell. In this work, we used several trade‐offs between fast growth and long survival to statistically score over 2,000 Escherichia coli proteins for their global correlation with death rate. The combined ranking allowed us to narrow down the set of proteins that positively correlate with survival and validate the causal role of a subset of proteins. Remarkably, we found that important survival genes are related to the cell envelope, i.e., periplasm and outer membrane, because the maintenance of envelope integrity of E. coli plays a crucial role during starvation. Our results uncover a new protective feature of the outer membrane that adds to the growing evidence that the outer membrane is not only a barrier that prevents abiotic substances from reaching the cytoplasm but also essential for bacterial proliferation and survival. 相似文献
13.
Saipraveen Srinivasan Venkatasubramanian Dharmarajan Dana Kim Reed Patrick R Griffin Sandra L Schmid 《The EMBO journal》2016,35(4):443-457
Vesicle release upon endocytosis requires membrane fission, catalyzed by the large GTPase dynamin. Dynamin contains five domains that together orchestrate its mechanochemical activity. Hydrogen–deuterium exchange coupled with mass spectrometry revealed global nucleotide‐ and membrane‐binding‐dependent conformational changes, as well as the existence of an allosteric relay element in the α2S helix of the dynamin stalk domain. As predicted from structural studies, FRET analyses detect large movements of the pleckstrin homology domain (PHD) from a ‘closed’ conformation docked near the stalk to an ‘open’ conformation able to interact with membranes. We engineered dynamin constructs locked in either the closed or open state by chemical cross‐linking or deletion mutagenesis and showed that PHD movements function as a conformational switch to regulate dynamin self‐assembly, membrane binding, and fission. This PHD conformational switch is impaired by a centronuclear myopathy‐causing disease mutation, S619L, highlighting the physiological significance of its role in regulating dynamin function. Together, these data provide new insight into coordinated conformational changes that regulate dynamin function and couple membrane binding, oligomerization, and GTPase activity during dynamin‐catalyzed membrane fission. 相似文献
14.
Hervé Rémigy Michel Jaquinod Yves Pétillot Jean Gagnon Hong Cheng Bin Xia John L. Markley John K. Hurley Gordon Tollin Eric Forest 《Journal of Protein Chemistry》1997,16(5):527-532
Hydrogen/deuterium exchange, which depends on solvent accessibility, can be probed by mass spectrometry (MS) to get information on protein conformation or protein–ligand interaction. In this work, the conformational properties of the cyanobacterium Anabaena wild-type ferredoxin as well as of two single-site mutants (Phe 65 Ala and Arg 42 Ala) were studied. After incubation of the wild type and mutant proteins in deuterated water and quenching of the exchange at low pH, the proteins were rapidly digested at high enzyme-to-substrate ratio using immobilized pepsin, and the resulting peptides were characterized using ESI-MS. We have identified specific regions for which the H-bonding or solvent accessibility properties were perturbed by the mutations. These results show that this approach can provide local information on the influence of mutations, even for a highly structured protein like ferredoxin, and sometimes in regions distant from the mutation point. 相似文献
15.
16.
Tau, as typical of intrinsically disordered proteins (IDPs), binds to multiple targets including microtubules and acidic membranes. The latter two surfaces are both highly negatively charged, raising the prospect of mimicry in their binding by tau. The tau‐microtubule complex was recently determined by cryo‐electron microscopy. Here, we used molecular dynamics simulations to characterize the dynamic binding of tau K19 to an acidic membrane. This IDP can be divided into three repeats, each containing an amphipathic helix. The three amphipathic helices, along with flanking residues, tether the protein to the membrane interface. The separation between and membrane positioning of the amphipathic helices in the simulations are validated by published EPR data. The membrane contact probabilities of individual residues in tau show both similarities to and distinctions from native contacts with microtubules. In particular, a Lys that is conserved among the repeats forms similar interactions with membranes and with microtubules, as does a conserved Val. This partial mimicry facilitates both the membrane anchoring of microtubules by tau and the transfer of tau from membranes to microtubules. 相似文献
17.
Extant fold‐switching proteins remodel their secondary structures and change their functions in response to environmental stimuli. These shapeshifting proteins regulate biological processes and are associated with a number of diseases, including tuberculosis, cancer, Alzheimer''s, and autoimmune disorders. Thus, predictive methods are needed to identify more fold‐switching proteins, especially since all naturally occurring instances have been discovered by chance. In response to this need, two high‐throughput predictive methods have recently been developed. Here we test them on ORF9b, a newly discovered fold switcher and potential therapeutic target from the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2). Promisingly, both methods correctly indicate that ORF9b switches folds. We then tested the same two methods on ORF9b1, the ORF9b homolog from SARS‐CoV‐1. Again, both methods predict that ORF9b1 switches folds, a finding consistent with experimental binding studies. Together, these results (a) demonstrate that protein fold switching can be predicted using high‐throughput computational approaches and (b) suggest that fold switching might be a general characteristic of ORF9b homologs. 相似文献
18.
L.A. Woods S.E. Radford A.E. Ashcroft 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(6):1257-1268
Interfacing ion mobility spectrometry to mass spectrometry (IMS–MS) has enabled mass spectrometric analyses to extend into an extra dimension, providing unrivalled separation and structural characterization of lowly populated species in heterogeneous mixtures. One biological system that has benefitted significantly from such advances is that of amyloid formation. Using IMS–MS, progress has been made into identifying transiently populated monomeric and oligomeric species for a number of different amyloid systems and has led to an enhanced understanding of the mechanism by which small molecules modulate amyloid formation. This review highlights recent advances in this field, which have been accelerated by the commercial availability of IMS–MS instruments. This article is part of a Special Issue entitled: Mass spectrometry in structural biology. 相似文献
19.
Mary Ashley Rimmer Owen W. Nadeau Antonio Artigues Gerald M. Carlson 《Protein science : a publication of the Protein Society》2018,27(2):485-497
In the tightly regulated glycogenolysis cascade, the breakdown of glycogen to glucose‐1‐phosphate, phosphorylase kinase (PhK) plays a key role in regulating the activity of glycogen phosphorylase. PhK is a 1.3 MDa hexadecamer, with four copies each of four different subunits (α, β, γ and δ), making the study of its structure challenging. Using hydrogen‐deuterium exchange, we have analyzed the regulatory β subunit and the catalytic γ subunit in the context of the intact non‐activated PhK complex to study the structure of these subunits and identify regions of surface exposure. Our data suggest that within the non‐activated complex the γ subunit assumes an activated conformation and are consistent with a previous docking model of the β subunit within the cryoelectron microscopy envelope of PhK. 相似文献
20.
Andreas Jenner Aida PeaBlanco Raquel SalvadorGallego Begoa UgarteUribe Cristiana Zollo Tariq Ganief Jan Bierlmeier Markus Mund Jason E Lee Jonas Ries Dirk Schwarzer Boris Macek Ana J GarciaSaez 《The EMBO journal》2022,41(8)
The apoptotic executioner protein BAX and the dynamin‐like protein DRP1 co‐localize at mitochondria during apoptosis to mediate mitochondrial permeabilization and fragmentation. However, the molecular basis and functional consequences of this interplay remain unknown. Here, we show that BAX and DRP1 physically interact, and that this interaction is enhanced during apoptosis. Complex formation between BAX and DRP1 occurs exclusively in the membrane environment and requires the BAX N‐terminal region, but also involves several other BAX surfaces. Furthermore, the association between BAX and DRP1 enhances the membrane activity of both proteins. Forced dimerization of BAX and DRP1 triggers their activation and translocation to mitochondria, where they induce mitochondrial remodeling and permeabilization to cause apoptosis even in the absence of apoptotic triggers. Based on this, we propose that DRP1 can promote apoptosis by acting as noncanonical direct activator of BAX through physical contacts with its N‐terminal region. 相似文献