首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Thyroid hormone regulates the expression of ventricular myosin isoenzymes by causing an accumulation of alpha-myosin heavy chain (MHC) mRNA and inhibiting expression of beta-MHC mRNA. However, the mechanism of thyroid hormone action has been difficult to examine in vivo because of its diverse actions. Accordingly, hormonal control of expression of six MHC isoform mRNAs and cardiac and skeletal alpha-actin mRNAs was studied in primary cultures of fetal rat heart myocytes grown in defined medium. The results indicate that in the absence of thyroid hormone, cultured heart cells express predominantly beta-MHC and cardiac alpha-actin mRNAs. Addition of 3,5,3'-triiodo-L-thyronine (T3) caused a rapid induction of alpha-MHC mRNA and decreased beta-MHC mRNA levels without affecting the skeletal muscle MHC mRNAs. There was an almost parallel change in the myosin isoenzymes. Cardiac alpha-actin mRNA levels were transiently increased by T3 treatment, but skeletal alpha-actin was unaffected. Elimination of insulin and epithelial growth factor from the medium did not alter the effects of T3 on cardiac MHC mRNA expression. Addition of various adrenergic agents to the medium had no appreciable effect on cardiac MHC mRNA expression despite the presence of functionally coupled alpha- and beta-adrenergic receptors. Addition of steroid hormones, muscarinic agents, and glucagon to the medium also had no effect. Thus, under defined conditions, T3 is able to regulate MHC gene expression at a pretranslational level without the need for other exogenous factors.  相似文献   

3.
It is generally accepted that mechanical stress of cardiomyocytes increases RNA and protein synthesis of myosin heavy chain (MHC) quantitatively but it is still a matter of debate whether MHC gene expression is also changed qualitatively. We investigated expression of MHC genes of spontaneously contracting neonatal cardiomyocytes experimentally arrested by permanent depolarization [potassium chloride (KCI)] as well as by electromechanical uncoupling [2,3 butanedione monoxime (BDM)]. Relative distribution of MHC mRNA isoforms (α and β) was studied by quantitative polymerase chain reaction. Expression of MHC isoenzymes was the same in contracting (34.5% β-MHC) and arrested (40.5% and 33.0% β-MHC in KCl and BDM, respectively) cardiomyocytes. However, treatment with phenylephrine for the same period increased significantly β-MHC expression to 55%. We conclude that hormonal factors rather than Ca2− or mechanical stress regulate qualitatively MHC gene expression. J. Cell. Biochem. 64:458–465. © 1997 Wiley-Liss, Inc.  相似文献   

4.
5.
6.
7.
8.
Skeletal muscle is known to be a target for the active metabolite of thyroid hormone, i.e., 3,5,3'-triiodothyronine (T(3)). T(3) acts by repressing or activating genes coding for different myosin heavy chain (MHC) isoforms via T(3) receptors (TRs). The diverse function of T(3) is presumed to be mediated by TR-alpha(1) and TR-beta, but the function of specific TRs in regulating MHC isoform expression has remained undefined. In this study, TR-deficient mice were used to expand our knowledge of the mechanisms by which T(3) regulates the expression of specific MHC isoforms via distinct TRs. In fast-twitch extensor digitorum longus (EDL) muscle, TR-alpha(1)-, TR-beta-, or TR-alpha(1)beta-deficient mice showed a small but statistically significant decrease (P < 0.05) of type IIB MHC content and an increased number of type I fibers. In the slow-twitch soleus, the beta/slow MHC (type I) isoform was significantly (P < 0. 001) upregulated in the TR-deficient mice, but this effect was highly dependent on the type of receptor deleted. The lack of TR-beta had no significant effect on the expression of MHC isoforms. An increase (P < 0.05) of type I MHC was observed in the TR-alpha(1)-deficient muscle. A dramatic overexpression (P < 0.001) of the slow type I MHC and a corresponding downregulation of the fast type IIA MHC (P < 0.001) was observed in TR-alpha(1)beta-deficient mice. The muscle- and fiber-specific differences in MHC isoform expression in the TR-alpha(1)beta-deficient mice resembled the MHC isoform transitions reported in hypothyroid animals, i.e., a mild MHC transition in the EDL, a dramatic but not complete upregulation of the beta/slow MHC isoform in the soleus, and a variable response to TR deficiency in different soleus muscle fibers. Thus the consequences on muscle are similar in the absence of thyroid hormone or absence of thyroid hormone receptors, indicating that TR-alpha(1) and TR-beta together mediate the known actions of T(3). However, it remains unknown how thyroid hormone exerts muscle- and muscle fiber-specific effects in its action. Finally, although developmental MHC transitions were not studied specifically in this study, the absence of embryonic and fetal MHC isoforms in the TR-deficient mice indicates that ultimately the transition to the adult MHC isoforms is not solely mediated by TRs.  相似文献   

9.
10.
11.
We examined the novel interaction ofhyperthyroidism and hindlimb suspension on the pattern of myosin heavychain (MHC) expression (mRNA and protein) in skeletal muscles. FemaleSprague-Dawley rats were assigned to four groups:1) normal control (Con);2) thyroid hormone treated[150 µg 3,5,3'-triiodothyronine(T3) · kg1 · day1](T3);3) hindlimb suspension (HS); or4)T3-treated and HS(T3 + HS). Results show for thefirst time the novel observation that the combinationT3 + HS induces a rapid andsustained, marked (80-90%) downregulation of type I MHC geneexpression that is mirrored temporally by concomitant markedupregulation of type IIb MHC gene expression, as evidenced by the denovo synthesis of type IIb MHC protein in the soleus. The fast type IIxMHC isoform showed a differential response among the experimentalgroups, generally increasing with the separate and combined treatments in both the soleus and vastus intermedius muscles while decreasing inthe plantaris muscles. The fast type IIa MHC was the least responsiveto suspension of the MHCs and reflected its greatest responsiveness toT3 treatment while also undergoingdifferential adaptations in slow vs. fast muscle (increases vs.decreases, respectively). These results confirm previous findings thatall four adult MHC genes are sensitive toT3 and suspension in amuscle-specific manner. In addition, we show thatT3 + HS can interactsynergistically to create novel adaptations in MHC expression thatcould not be observed when each factor was imposed separately.

  相似文献   

12.
Methamphetamine (MAP) is one of the most abused drugs in Japan. The rate of MAP abuse by young women has recently reached more than 50 percent in adolescents. A major health concern is that these women will continue to use MAP during pregnancy. The purpose of this study was to investigate whether MAP administered to the mother during pregnancy would change the expression of α- and β- myosin heavy chain (MHC) mRNA in rat neonatal hearts, as detected by quantitative RT-PCR. In addition, morphological changes in the rat neonatal ventricles were examined. Pregnant rats were injected intraperitoneally with MAP (1 mg/kg/day) starting at day 0 of gestation and ending at day 21. There was a significant increase in α-MHC mRNA expression in the neonatal ventricular muscle in the experimental group compared with the control at postnatal day (P) 0 and 5. α-MHC mRNA expression in both groups was similar after P9. β-MHC mRNA expression was similar in both groups at P0. Postnatal β-MHC mRNA expression decreased rapidly, but significant alteration was not detected. Neonatal rats at P0 exhibited some cardiac changes, including hypertrophy, degeneration, and disarrangement of myofibers, but these lesions disappeared by P14. We conclude that chronic maternal administration of MAP changes the α- and β-MHC mRNA expression pattern in fetal and neonatal hearts, correlating with abnormal development, plasma level of hormones, and myocardial damage. At the same time, it is indicated that neonatal cardiomyocytes have reversibility.  相似文献   

13.
M J Morgan  P T Loughna 《FEBS letters》1989,255(2):427-430
Work induced hypertrophy of the slow postural soleus and the fast phasic plantaris muscles was produced by tenotomy of the synergistic gastrocnemius muscle. Increases in weight of both muscles were associated with proportionately even larger increases in total RNA and mRNA levels. Alterations in levels of specific myosin heavy chain (MHC) isoform mRNAs were measured using the slot blot procedure with radioactively labelled oligonucleotides as probes. Type 1 MHC gene expression was unaffected in both muscles by work overload, whereas type 2a was deinduced in the soleus and type 2b was deinduced in the plantaris. The neonatal MHC gene was transiently reinduced in the plantaris.  相似文献   

14.
The myosin heavy chain (MHC) was studied by biochemical methods in the slow-twitch (soleus) and two fast-twitch leg muscles of the triiodothyronine treated (hyperthyroid), thyroidectomized (hypothyroid) and euthyroid (control) rats. The changes in the contents of individual MHC isoforms(MHC-1, MHC-2A, MHC-2B and MHC-2X) were evaluated in relation to the muscle mass and the total MHC content. The MHC-1 content decreased in hyperthyreosis, while it increased in hypothyreosis in the soleus and in the fast muscles. The MHC-2A content increased in hyperthyreosis and it decreased in hypothyreosis in the soleus muscle. In the fast muscles hyperthyreosis did not affect the MHC-2A content, whereas hypothyreosis caused an increase in this MHC isoform content. The MHC-2X, present only in traces or undetected in the control soleus muscle, was synthesised in considerable amount in hyperthyreosis; in hypothyreosis the MHC-2X was not detected in the soleus. In the fast muscles the content of MHC-2X was not affected by any changes in the thyroid hormone level. The MHC-2B seemed to be not influenced by hyperthyreosis in the fast muscles, whereas the hypothyreosis caused a decrease of its content. In the soleus muscle the MHC-2B was not detected in any groups of rats. The results suggest that the amount of each of the four MHC isoforms expressed in the mature rat leg muscles is influenced by the thyroid hormone in a different way. The MHC-2A and the MHC-2X are differently regulated in the soleus and in the fast muscles; thyroid hormone seems to be necessary for expression of those isoforms in the soleus muscle.  相似文献   

15.
16.
《Organogenesis》2013,9(3):182-187
We have shown that there is significant disparity in the expression of uncoupling proteins (UCP) 2 and 3 between modern-commercial and ancient-Meishan porcine genotypes, commercial pigs also have higher plasma triiodothyronine (T3) in on the first day of life. T3 and the sympathetic nervous system are both known to regulate UCPs in rodents and humans; their role in regulating these proteins in the pig is unknown. This study examined whether thyroid hormone manipulation or administration of a selective β3 adrenoceptor agonist (ZD) influenced plasma hormones, colonic temperature and UCP expression in adipose tissue of two breeds of pig. To mimic the differences observed in thyroid hormone status, piglets from Meishan and commercial litters were randomly assigned to control (1 ml/kg water), T3 (10 mg/kg) (Meishan only), methimazole (a commonly used antithyroid drug) (50 mg/kg) (commercial only) or ZD (10 mg/kg) oral administration for the first 4 days of postnatal life. Adipose tissue UCP2/3 mRNA abundance was measured on day 4 using PCR. T3 administration raised plasma T3 concentrations and increased colonic temperature on day 4. UCP3 mRNA abundance was higher in Meishan, than commercial piglets and was downregulated following T3 administration. Irrespective of genotype, ZD increased UCP2 mRNA abundance. Expression of neither UCP2 nor 3 was related to colonic temperature, regardless of treatment. In conclusion, we have demonstrated a dissociation between thyroid hormones and the sympathetic nervous system in the regulation of UCPs in porcine adipose tissue. We have also suggested that expression of adipose tissue UCP2 and 3 are not related to body temperature in piglets.  相似文献   

17.
The expression of 56D and 60C β-tubulin genes has been examined in Drosophila melanogaster Kc cells in response to the insect moulting hormone, 20-hydroxyecdysone (20-OH-E). Northern blots probed with β-tubulin subclones show that the 56D β-tubulin gene encodes a 1.8 kb mRNA whose abundance is not affected by 20-OH-E. The 60C gene probe detects two mRNAs: one of 1.8 kb present in untreated and 20-OH-E-treated cells, and one of 2.6 kb present only in 20-OH-E-treated cells; using a 60C 3′-specific probe, only the 2.6 kb is revealed. Hybrid selection translation experiment demonstrates that a 20-OH-E-inducible mRNA homologous to the 60C gene encodes a β-tubulin subunit (P4); this subunit is the so-called β3-tubulin. Translation of size-fractionated mRNA shows that the 20-OH-E-induced β3-tubulin subunit is encoded, in treated cells, by the 2.6 kb mRNA.  相似文献   

18.
19.
20.
Changes in the myosin phenotype of differentiated muscle are a prominent feature of the adaptation of the tissue to a variety of physiological stimuli. In the present study the molecular basis of changes in the proportion of myosin isoenzymes in rat skeletal muscle which occur during compensatory hypertrophy caused by the combined removal of synergist muscles and spontaneous running exercise was investigated. The relative amounts of sarcomeric myosin heavy (MHC)- and light (MLC)-chain mRNAs in the plantaris (fast) and soleus (slow) muscles from rats was assessed with cDNA probes specific for different MHC and MLC genes. Changes in the proportion of specific MHC mRNA levels were in the same direction as, and of similar magnitude to, changes in the proportion of myosin isoenzymes encoded for by the mRNAs. No significant changes in the proportion of MLC proteins or mRNA were detected. However, high levels of MLC3 mRNA were measured in both normal and hypertrophied soleus muscles which contained only trace amounts of MLC3 protein. Small amounts of embryonic and neonatal MHC mRNAs were induced in both muscles during hypertrophy. We conclude that the change in the pattern of myosin isoenzymes during skeletal-muscle adaptation to work overload is a consequence of changes in specific MHC mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号