首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria isolated from rat heart and kidney cortex by Polytron treatment of the tissues exhibit lower state 3 rates of respiration than mitochondria isolated by Nagarse method. Addition of cytochrome c to Polytron mitochondria isolated from heart, but not from kidney, increases oxygen uptake to values approaching those of Nagarse-treated preparations. Similar results were observed for Ca2+ uptake. Kidney Polytron mitochondria exhibited lower mitochondrial, but higher non-mitochondrial enzyme activities compared to kidney Nagarse mitochondria. Enzyme activities were the same in Polytron and Nagarse mitochondria from heart. The differences between Polytron and Nagarse mitochondria appear to be mainly due to lower cytochrome c content of Polytron mitochondria from heart and higher contamination of Polytron mitochondria from kidney.  相似文献   

2.
Peroxisome proliferator-activated receptor-alpha (PPARalpha) regulates the expression of fatty acid (FA) oxidation genes in liver and heart. Although PPARalpha ligands increased FA oxidation in cultured cardiomyocytes, the cardiac effects of chronic PPARalpha ligand administration in vivo have not been studied. Diabetic db/db mouse hearts exhibit characteristics of a diabetic cardiomyopathy, with altered metabolism and reduced contractile function. A testable hypothesis is that chronic administration of a PPARalpha agonist to db/db mice will normalize cardiac metabolism and improve contractile function. Therefore, a PPARalpha ligand (BM 17.0744) was administered orally to control and type 2 diabetic (db/db) mice (37.9 +/- 2.5 mg/(kg.d) for 8 weeks), and effects on cardiac metabolism and contractile function were assessed. BM 17.0744 reduced plasma glucose in db/db mice, but no change was observed in control mice. FA oxidation was significantly reduced in BM 17.0744 treated db/db hearts with a corresponding increase in glycolysis and glucose oxidation; glucose and FA oxidation in control hearts was unchanged by BM 17.0744. PPARalpha treatment did not alter expression of PPARalpha target genes in either control or diabetic hearts. Therefore, metabolic alterations in hearts from PPARalpha-treated diabetic mice most likely reflect indirect mechanisms related to improvement in diabetic status in vivo. Despite normalization of cardiac metabolism, PPARalpha treatment did not improve cardiac function in diabetic hearts.  相似文献   

3.
Fatty acid metabolism is enhanced in type 2 diabetic hearts   总被引:10,自引:0,他引:10  
The metabolic phenotype of hearts has been investigated using rodent models of type 2 diabetes which exhibit obesity and insulin resistance: db/db and ob/ob mice, and Zucker fatty and ZDF rats. In general, cardiac fatty acid (FA) utilization is enhanced in type 2 diabetic hearts, with increased rates of FA oxidation (db/db, ob/ob and ZDF models) and increased FA esterification into cellular triacylglycerols (db/db hearts). Hearts from db/db and ob/ob mice and ZDF rat hearts all have elevated levels of myocardial triacylglycerols, consistent with enhanced FA utilization. A number of mechanisms may be responsible for enhanced FA utilization in type 2 diabetic hearts: (i) increased FA uptake into cardiac myocytes and into mitochondria; (ii) altered mitochondrial function, with up-regulation of uncoupling proteins; and (iii) stimulation of peroxisome proliferator-activated receptor-alpha. Enhanced cardiac FA utilization in rodent type 2 diabetic models is associated with reduced cardiac contractile function, perhaps as a consequence of lipotoxicity and/or reduced cardiac efficiency. Similar results have been obtained with human type 2 diabetic hearts, suggesting that pharmacological interventions that can reduce cardiac FA utilization may have beneficial effects on contractile function.  相似文献   

4.
Studies of cardiac fuel metabolism in mice have been almost exclusively conducted ex vivo. The major aim of this study was to assess in vivo plasma FFA and glucose utilization by the hearts of healthy control (db/+) and diabetic (db/db) mice, based on cardiac uptake of (R)-2-[9,10-(3)H]bromopalmitate ([3H]R-BrP) and 2-deoxy-D-[U-14C]glucose tracers. To obtain quantitative information about the evaluation of cardiac FFA utilization with [3H]R-BrP, simultaneous comparisons of [3H]R-BrP and [14C]palmitate ([14C]P) uptake were first made in isolated perfused working hearts from db/+ mice. It was found that [3H]R-BrP uptake was closely correlated with [14C]P oxidation (r2 = 0.94, P < 0.001). Then, methods for in vivo application of [3H]R-BrP and [14C]2-DG previously developed for application in the rat were specially adapted for use in the mouse. The method yields indexes of cardiac FFA utilization (R(f)*) and clearance (K(f)*), as well as glucose utilization (R(g)'). Finally, in the main part of the study, the ability of the heart to switch between FFA and glucose fuels (metabolic flexibility) was investigated by studying anesthetized, 8-h-fasted control and db/db mice in either the basal state or during glucose infusion. In control mice, glucose infusion raised plasma levels of glucose and insulin, raised R(g)' (+58%), and lowered plasma FFA level (-48%), K(f)* (-45%), and R(f)* (-70%). This apparent reciprocal regulation of glucose and FFA utilization by control hearts illustrates metabolic flexibility for substrate use. By contrast, in the db/db mice, glucose infusion raised glucose levels with no apparent influence on cardiac FFA or glucose utilization. In conclusion, tracer methodology for assessing in vivo tissue-specific plasma FFA and glucose utilization has been adapted for use in mice and reveals a profound loss of metabolic flexibility in the diabetic db/db heart, suggesting a fixed level of FFA oxidation in fasted and glucose-infused states.  相似文献   

5.
Ca2+ transport and respiratory characteristics of two preparations of cardiac mitochondria (Palmer, J.W., Tandler, B. and Hoppel, C.L. (1977) J. Biol. Chem. 252, 8731–8739) isolated using polytron homogenization (subsarcolemmal mitochondria) and limited Nagarse exposure (intermyofibrillar mitochondria) are described.The Nagarse procedure yields mitochondria with 50% higher rates of oxidative phosphorylation than the polytron-prepared mitochondria in both rat and dog. Rat hear intermyofibrillar mitochondria contain 50% more cytochrome aa3 than the polytron preparation, whereas in the dog, cytochrome aa3 content is not significantly different. Cytochrome oxidase activities and cytochrome c, c1 and b contents were comparable in both populations of rat and dog heart mitochondria.The V of succinate-supported Ca2+ accumulation for Nagarse-prepared mitochondria from rat heart was 1.8-fold higher than the polytron-prepared mitochondria. In dog heart, the Nagarse preparation showed a 3.0-fold higher V for Ca2+ uptake compared to the polytron preparation. A lower apparent affinity for Ca2+ was demonstrated in the intermyofibrillar mitochondria for both species (Km is 2–2.5-fold higher). The Hill coefficient was 1 both mitochondrial types. Subsarcolemmal mitochondria from both species were treated with Nagarse to determine the role of this treatment on the observed differences. Nagarse did not alter any kinetic parameter of Ca2+ uptake.The properties of these mitochondria with reference to their presumed intracellular location may pertain to the role of mitochondria as an intracellular Ca2+ buffering mechanism in contractile tissue.  相似文献   

6.
The alpha-subunit of pyruvate dehydrogenase and succinyl-CoA synthetase are phosphorylated after incubation of cardiac mitochondria from genetically diabetic mice with [gamma-32P]ATP. There is significantly increased incorporation of 32P into pyruvate dehydrogenase from diabetic mice when compared to controls. The enhanced rate of pyruvate dehydrogenase phosphorylation correlates well with the previously reported defective oxidative metabolism and decreased activity of this enzyme from diabetic mice. The relationship between abnormal mitochondrial function and development of cardiomyopathy in the diabetic mice has been studied further by in vivo estrone treatment. The results indicate that ultrastructural alterations of myocardium are closely associated with the defective pyruvate oxidation (via phosphorylation of pyruvate dehydrogenase) and both processes can be prevented by 7-12 weeks estrone treatment.  相似文献   

7.
Contractile function and substrate metabolism were characterized in perfused hearts from genetically diabetic C57BL/KsJ-lepr(db)/lepr(db) (db/db) mice and their non-diabetic lean littermates. Contractility was assessed in working hearts by measuring left ventricular pressures and cardiac power. Rates of glycolysis, glucose oxidation, and fatty acid oxidation were measured using radiolabeled substrates ([5-(3)H]glucose, [U-(14)C]glucose, and [9,10-(3)H]palmitate) in the perfusate. Contractile dysfunction in db/db hearts was evident, with increased left ventricular end diastolic pressure and decreased left ventricular developed pressure, cardiac output, and cardiac power. The rate of glycolysis from exogenous glucose in diabetic hearts was 48% of control, whereas glucose oxidation was depressed to only 16% of control. In contrast, palmitate oxidation was increased twofold in db/db hearts. The hypothesis that altered metabolism plays a causative role in diabetes-induced contractile dysfunction was tested using perfused hearts from transgenic db/db mice that overexpress GLUT-4 glucose transporters. Both glucose metabolism and palmitate metabolism were normalized in hearts from db/db-human insulin-regulatable glucose transporter (hGLUT-4) hearts, as was contractile function. These findings strongly support a causative role of impaired metabolism in the cardiomyopathy observed in db/db diabetic hearts.  相似文献   

8.
Hearts from insulin-resistant type 2 diabetic db/db mice exhibit features of a diabetic cardiomyopathy with altered metabolism of exogenous substrates and reduced contractile performance. Therefore, the effect of chronic oral administration of 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (COOH), a novel ligand for peroxisome proliferator-activated receptor-gamma that produces insulin sensitization, to db/db mice (30 mg/kg for 6 wk) on cardiac function was assessed. COOH treatment reduced blood glucose from 27 mM in untreated db/db mice to a normal level of 10 mM. Insulin-stimulated glucose uptake was enhanced in cardiomyocytes from COOH-treated db/db hearts. Working perfused hearts from COOH-treated db/db mice demonstrated metabolic changes with enhanced glucose oxidation and decreased palmitate oxidation. However, COOH treatment did not improve contractile performance assessed with ex vivo perfused hearts and in vivo by echocardiography. The reduced outward K+ currents in diabetic cardiomyocytes were still attenuated after COOH. Metabolic changes in COOH-treated db/db hearts are most likely indirect, secondary to changes in supply of exogenous substrates in vivo and insulin sensitization.  相似文献   

9.

Background

Nitrosative and oxidative stress play a key role in obesity and diabetes-related mitochondrial dysfunction. The objective was to investigate the effect of curcumin treatment on state 3 and 4 oxygen consumption, nitric oxide (NO) synthesis, ATPase activity and lipid oxidation in mitochondria isolated from liver and kidneys of diabetic db/db mice.

Results

Hyperglycaemia increased oxygen consumption and decreased NO synthesis in liver mitochondria isolated from diabetic mice relative to the control mice. In kidney mitochondria, hyperglycaemia increased state 3 oxygen consumption and thiobarbituric acid-reactive substances (TBARS) levels in diabetic mice relative to control mice. Interestingly, treating db/db mice with curcumin improved or restored these parameters to normal levels; also curcumin increased liver mitochondrial ATPase activity in db/db mice relative to untreated db/db mice.

Conclusions

These findings suggest that hyperglycaemia modifies oxygen consumption rate, NO synthesis and increases TBARS levels in mitochondria from the liver and kidneys of diabetic mice, whereas curcumin may have a protective role against these alterations.  相似文献   

10.
Abstract: CBL/57 strain db/db mice exhibit type II (non-insulin-dependent) diabetes. The affected mice are markedly hyperinsulinemic, hyperglycemic, and hypercholesterolemic, and their serum K+ levels are decreased. The brains of the diabetic mice are significantly smaller than those of their lean, control littermates, but the protein concentration is normal. The low brain weight is accompanied by a loss of major fatty acid components within the whole brain, nerve endings, and mitochondrial membranes. Cholesterol levels are low in whole brain but are not significantly different from normal in the synaptosomal membranes. The phospholipid concentration is significantly decreased in whole brain homogenates, crude synaptosomal membranes, and crude mitochondrial membranes of the diabetic mice. In addition, the specific activities of membrane-bound synaptosomal acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase are decreased in crude synaptosomal membranes of the diabetic mice. The specific activities of carnitine palmitoyltransferase I and carnitine acetyltransferase are significantly increased in the crude mitochondrial fraction isolated from the brains of the type II diabetic mice, whereas the specific activity of pyruvate dehydrogenase complex is decreased. The specific activities of two other mitochondrial enzymes—monoamine oxidase B and citrate synthase—and a cytosolic enzyme—lactate dehydrogenase—are unaltered. The ability to synthesize cyclic AMP is markedly decreased in the brains of the diabetic mice. The concentrations of carnitine and of the amino acids, glutamate, aspartate, glutamine, and serine are unaltered, whereas glycine levels are significantly elevated in the brains of the db/db mice. The data suggest that in vivo the brains of the diabetic mice exhibit a decreased capacity for glucose oxidation and increased capacity for fatty acid oxidation. This hypothesis is supported by the finding that cerebral mitochondria isolated from the db/db mice oxidize [1-14C]palmitate to 14CO2 at a rate almost twice that of control mitochondria. The present findings emphasize the potentially serious alteration of brain metabolism in uncontrolled type II diabetes.  相似文献   

11.
目的:探讨烟酰胺核糖(NR)对2型糖尿病小鼠心肌病的治疗作用及其机制。方法:2型糖尿病模型db/db鼠和及其严格对照小鼠db/+小鼠,将小鼠分为Con (db/+)组,DM (db/db)组,DM+NR组。采用超声测小鼠心脏功能,western-blot及免疫组化测SIRT1表达含量,DHE染色、MDA含量和MnSOD活性检测反映氧化应激水平。结果:与对照组相比,db/db小鼠心脏功能显著下降(LVEF:42.3±7.2vs 73.7±10.2, P0.01;LVFS:22.1±4.2vs 42.7±6.9, P0.01),SIRT1表达量显著下调(P0.01)。NR喂养提高SIRT1表达量(P0.01),并有效改善db/db小鼠心脏功能(LVEF:53.1±8.1vs 42.3±7.2, P0.01;LVFS:33.4±6.9vs 22.1±4.2, P0.01)。同时,NR喂养显著降低了db/db小鼠心肌组织的凋亡水平和氧化应激水平(P0.05)。结论:NR有效改善了db/db小鼠的心功能障碍,降低了db/db小鼠的心肌凋亡水平和氧化应激水平,这些作用的发挥可能与NR增加SIRT1的表达量有关。  相似文献   

12.
Hearts from type 2 diabetic (db/db) mice demonstrate altered substrate utilization with high rates of fatty acid oxidation, decreased functional recovery following ischemia, and reduced cardiac efficiency. Although db/db mice show overall insulin resistance in vivo, we recently reported that insulin induces a marked shift toward glucose oxidation in isolated perfused db/db hearts. We hypothesize that such a shift in metabolism should improve cardiac efficiency and consequently increase functional recovery following low-flow ischemia. Hearts from db/db and nondiabetic (db/+) mice were perfused with 0.7 mM palmitate plus either 5 mM glucose (G), 5 mM glucose and 300 microU/ml insulin (GI), or 33 mM glucose and 900 microU/ml insulin (HGHI). Substrate oxidation and postischemic recovery were only moderately affected by GI and HGHI in db/+ hearts. In contrast, GI and particularly HGHI markedly increased glucose oxidation and improved postischemic functional recovery in db/db hearts. Cardiac efficiency was significantly improved in db/db, but not in db/+ hearts, in the presence of HGHI. In conclusion, insulin and glucose normalize cardiac metabolism, restore efficiency, and improve postischemic recovery in type 2 diabetic mouse hearts. These findings may in part explain the beneficial effect of glucose-insulin-potassium therapy in diabetic patients with cardiac complications.  相似文献   

13.

Background

Using fatty acids (FAs) exclusively for ATP generation was reported to contribute to the development of diabetic cardiomyopathy. We studied the role of substrate metabolism related genes in the heart of the diabetes to find out a novel therapeutic target for diabetic cardiomyopathy.

Methods and Results

By microarray analysis of metabolic gene expression, acyl-CoA thioesterase 1 (acot1) was clearly upregulated in the myocardia of db/db mice, compared with normal control C57BL/Ks. Therefore, gain-of-function and loss-of-function approaches were employed in db/db mice to investigate the functions of ACOT1 in oxidative stress, mitochondrial dysfunction and heart function. We found that in the hearts of db/db mice which overexpressed ACOT1, H2O2 and malondialdehyde (MDA) were reduced, the activities of ATPases in mitochondria associated with mitochondrial function were promoted, the expression of uncoupling protein 3 (UCP3) contributing to oxygen wastage for noncontractile purposes was decreased, and cardiac dysfunction was attenuated, as determined by both hemodynamic and echocardiographic detections. Consistently, ACOT1 deficiency had opposite effects, which accelerated the cardiac damage induced by diabetes. Notably, by real-time PCR, we found that overexpression of ACOT1 in diabetic heart repressed the peroxisome proliferator-activated receptor alpha/PPARγ coactivator 1α (PPARα/PGC1α) signaling, as shown by decreased expression of PGC1α and the downstream genes involved in FAs use.

Conclusion

Our results demonstrated that ACOT1 played a crucial protective role in diabetic heart via PPARα/PGC1α signaling.  相似文献   

14.
J. W. de Jong 《BBA》1971,245(2):288-298
1. A Q10 of about 3 for palmitoyl-CoA synthetase (EC 6.2.1.3) in rat heart and liver mitochondria is found.

2. In heart mitochondria Nagarse (EC 3.4.4.16) destroys the ability to activate palmitate. When, however, heart mitochondria are oxidizing palmitate, they are protected from the inactivating action of Nagarse.

3. Although treatment of liver mitochondria with Nagarse causes the loss of about 95 % of the palmitoyl-CoA synthetase activity, no influence is observed on palmitate oxidation.

4. Adenosine inhibits palmitoyl-CoA synthetase in liver and heart mitochondria. Adenosine is a competitive inhibitor with respect to ATP with an apparent Ki of 0.1 mM. The residual palmitoyl-CoA synthetase in Nagarse-treated liver mitochondria is much less sensitive to adenosine.

5. 2 mM adenosine or 2 mM adenosinesulfate inhibit palmitate oxidation (in the presence of 2.5 mM ATP) in heart mitochondria 60–90 %.

6. The data obtained are consistent with the concept of a palmitoyl-CoA synthetase localized on the outside of the outer membrane of rat heart and liver mitochondria, with an additional locus of (ATP-dependent) palmitoyl-CoA synthesis in the inner membrane matrix compartment of liver mitochondria.  相似文献   


15.
Clinical studies have reported that the incidence and severity of myocardial infarction is significantly greater in diabetics compared with nondiabetics after correction for all other risk factors. The majority of studies investigating the pathophysiology of myocardial ischemia-reperfusion injury have focused on otherwise healthy animals. At present, there is a paucity of experimental investigations on the pathophysiology of heart failure in diabetic animals. We hypothesized that the severity of myocardial reperfusion injury and the development of congestive heart failure would be markedly enhanced in the db/db diabetic mouse. Accordingly, we studied the effects of varying durations of in vivo myocardial ischemia and reperfusion on the incidence of heart failure in db/db diabetic mice. Nondiabetic and db/db diabetic mice (10 wk of age) were subjected to 30, 45, or 60 min of left coronary artery occlusion and 28 days of reperfusion. Survival at 24 h of reperfusion was 100% in nondiabetic mice subjected to 30 min of myocardial ischemia and 88% in nondiabetic mice subjected to 45 min of myocardial ischemia. In contrast, survival was 53% in db/db diabetic mice subjected to 30 min of myocardial ischemia and 44% in db/db mice after 45 min of myocardial ischemia. Prolonged survival in nondiabetic mice was not significantly attenuated when compared during the 28-day follow-up period with all groups experiencing >90% survival. Prolonged survival was significantly decreased in db/db mice after both 30 and 45 min of myocardial ischemia compared with sham controls. Furthermore, we observed a significant degree or left ventricular dilatation, cardiac hypertrophy, and cardiac contractile dysfunction in db/db mice subjected to 45 min of myocardial ischemia and 28 days reperfusion. In nondiabetic mice subjected to 45 min of myocardial ischemia, we failed to observe any changes in left ventricular dimensions or fractional shortening. These studies provide a feasible experimental model system for the investigation of heart failure secondary to acute myocardial infarction in the db/db diabetic mouse.  相似文献   

16.
Hydrolysis of triacylglycerols (TG) in circulating chylomicrons by endothelium-bound lipoprotein lipase (LPL) provides a source of fatty acids (FA) for cardiac metabolism. The effect of diabetes on the metabolism of chylomicrons by perfused mouse hearts was investigated with db/db (type 2) and streptozotocin (STZ)-treated (type 1) diabetic mice. Endothelium-bound heparin-releasable LPL activity was unchanged in both type 1 and type 2 diabetic hearts. The metabolism of LPL-derived FA was examined by perfusing hearts with chylomicrons containing radiolabeled TG and by measuring (3)H(2)O accumulation in the perfusate (oxidation) and incorporation of radioactivity into tissue TG (esterification). Rates of LPL-derived FA oxidation and esterification were increased 2.3-fold and 1.7-fold in db/db hearts. Similarly, LPL-derived FA oxidation and esterification were increased 3.4-fold and 2.5-fold, respectively, in perfused hearts from STZ-treated mice. The oxidation and esterification of [(3)H]palmitate complexed to albumin were also increased in type 1 and type 2 diabetic hearts. Therefore, diabetes may not influence the supply of LPL-derived FA, but total FA utilization (oxidation and esterification) was enhanced.  相似文献   

17.
Lipids and lipolytic enzyme activities of rat heart mitochondria   总被引:1,自引:0,他引:1  
The lipid composition and lipolytic enzyme activities in rat cardiac mitochondria were examined. Subsarcolemmal mitochondria were prepared by treatment of heart muscle with a Polytron tissue processor, while interfibrillar mitochondria were released by exposure of the remaining low-speed pellet to the protease, nagarse. These procedures are known to yield two functionally different populations of mitochondria. However, their phospholipid contents and compositions were identical, as were the positional distributions of the constituent fatty acids. Of the ethanolamine phospholipids, 20% were plasmalogens, and about 2% of the choline phospholipids consisted of this alkenylacyl species. Both subsarcolemmal and interfibrillar mitochondria contained a Ca2+-activated phospholipase A2, as evidenced by the Ca2+-dependent release of unsaturated fatty acids and lysophosphatidylethanolamine from endogenous lipids. Ruthenium red prevented the activation of this enzyme by Ca2+, indicating that the activity is located in the matrix space or associated with the inner surface of the inner membrane. Both mitochondrial fractions produced free fatty acids and lysophosphatidylethanolamine in the absence of free Ca2+ apparently due to an outer membrane phospholipase A1. The activity of this enzyme decreased with time, particularly in interfibrillar mitochondria, providing that Ca2+ was absent. Nagarse treatment of subsarcolemmal mitochondria resulted in a preparation with the same phospholipase A1 properties as interfibrillar mitochondria. The possibility that differences in phospholipase A1 properties account for some of the functional variations between the two mitochondrial types is discussed.  相似文献   

18.
Diabetic cardiomyopathy (DCM) is a common diabetic complication characterized by diastolic relaxation abnormalities, myocardial fibrosis and chronic heart failure. Although TGF-β/Smad3 signalling has been shown to play a critical role in chronic heart disease, the role and mechanisms of Smad3 in DCM remain unclear. We reported here the potential role of Smad3 in the development of DCM by genetically deleting the Smad3 gene from db/db mice. At the age of 32 weeks, Smad3WT-db/db mice developed moderate to severe DCM as demonstrated by a marked increase in the left ventricular (LV) mass, a significant fall in the LV ejection fraction (EF) and LV fractional shortening (FS), and progressive myocardial fibrosis and inflammation. In contrast, db/db mice lacking Smad3 (Smad3KO-db/db) were protected against the development of DCM with normal cardiac function and undetectable myocardial inflammation and fibrosis. Interestingly, db/db mice with deleting one copy of Smad3 (Smad3 ± db/db) did not show any cardioprotective effects. Mechanistically, we found that deletion of Smad3 from db/db mice largely protected cardiac Smad7 from Smurf2-mediated ubiquitin proteasome degradation, thereby inducing IBα to suppress NF-kB-driven cardiac inflammation. In addition, deletion of Smad3 also altered Smad3-dependent miRNAs by up-regulating cardiac miR-29b while suppressing miR-21 to exhibit the cardioprotective effect on Smad3KO-db/db mice. In conclusion, results from this study reveal that Smad3 is a key mediator in the pathogenesis of DCM. Targeting Smad3 may be a novel therapy for DCM.  相似文献   

19.
Ca2+ uptake and the effect of the uptake inhibitors palmitoyl-CoA and palmitoylcarnitine were examined in two preparations of dog cardiac mitochondria. Mitochondria prepared by using the Nagarse technique was 2.5-fold more active in respiration-dependent Ca2+ uptake than were mitochondria isolated by using the Polytron procedure. Palmitoyl-CoA and palmitoylcarnitine inhibited Ca2+ uptake in both preparations uncompetitively, with Ki,app 0.4 and 20μm. Ca2+-uptake rates were related to, or influenced by, the concentration of mitochondrial reduced nicotinamide nucleotides, with uptake slowing as this concentration decreased. When most of the nicotinamide nucleotides was oxidized, Ca2+ release and respiratory stimulation were observed. In the presence of Ruthenium Red and palmitoyl-CoA, oxidation of nicotinamide nucleotides was abolished and the time to Ca2+ release was shortened corresponding to the time of onset of nicotinamide nucleotide oxidation in the absence of Ruthenium Red. The results suggest that NAD(P)H oxidation in the presence of rotenone was a consequence of Ca2+ re-uptake and that net Ca2+ release could be observed as reduced nicotinamide nucleotide concentrations declined. Although nicotinamide nucleotide oxidation occurred in the presence of rotenone, it was not linked in an apparent manner to acyl-group metabolism (palmitoylcarnitine was less effective than palmitoyl-CoA). Therefore either a by-pass of the rotenone block or a direct interaction of NAD(P)H with the Ca2+-uptake process was possible. Loss of NADH occurred before respiratory stimulation, and this loss may relate to decreased coupling efficiency at sites 2 and 3 of the respiratory chain, as suggested by others [Bhuvaneswaran & Wadkins (1978) Biochem. Biophys. Res. Commun. 82, 648–654].  相似文献   

20.
An improved procedure for the isolation of mitochondria in high yields from normal and oxygen-deficient myocardium is described. The heart muscle is digested with Nagarse and homogenized simultaneously using a Polytron tissue homogenizer. Mitochondria are isolated by differential centrifugation, and othe subcellular fractions are carefully rinsed to maximize mitochondrial yields. Yields of 28 to 33 mg of mitochondrial protein/g wet wt of heart were obtained from normal (nonperfused and control perfused) hearts and from oxygen deficient (ischemic and autolyzed) hearts. This represents a recovery of 52 to 61% of the total mitochondrial content of the tissue. These mitochondria are functionally intact, with respiratory control ratios of 5.0 to 7.6 and ADPO ratios of 2.34 to 2.66. The lysosomal content of the mitochondrial preparations was not increased by this procedure. This method is especially suitable for the preparation of mitochondria in high yield from a single heart, but can also be used to obtain high yields of mitochondria from larger quantities of myocardial tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号