首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probably the best marker enzyme for plasma membranes of eukaryotic cells is a magnesium-dependent, vanadate-inhibited ATPase whose primary function is the transmembrane transport of cations. In animal cells, different species of the enzyme transport different cations: sodium ions released in unequal exchange for potassium ions, calcium ions extruded alone (perhaps), or protons secreted in equal exchange for potassium ions. But in plants and fungi only proton secretion has been clearly demonstrated. A useful model cell for studying the proton-secreting ATPase has been the ascomycete fungusNeurospora, in which the enzyme drives an outward current of protons that can exceed 50 µA/cm2 and can support membrane potentials greater than 300 mV. Both thermodynamic and kinetic studies have shown that the proton-pumping ATPase ofNeurospora normally transports only a single proton for each ATP molecule split; and kinetic modelling studies have suggested (contrary to conventional assumptions) that the fast steps in the overall reaction are transmembrane transit of the proton and its dissociation following transport, while the slow steps are the binding of protons and/or ATP. The primary structure of theNeurospora enzyme, recently deduced by gene sequencing, is very close to that of the yeast (Saccharomyces) enzyme, and the hydropathic patterns for both closely resemble those for the animal-cell plasma-membrane ATPases. All of these enzymes appear to have 6–10 membrane-spanning -helices, plus a large cytoplasmic headgroup which bears the catalytic nucleotide-binding site. Structural data, taken together with the electrical-kinetic behavior, suggest that the catalytic headgroup functions as an energized gate for protons. From a geometric point of view, action of such a gate would transfer the membrane field across the transported ion, rather than vice versa.  相似文献   

2.
Hicks GR  Rice MS  Lomax TL 《Planta》1993,189(1):83-90
We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948–4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or mutimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.Abbreviations HPLC high-pressure liquid chromatography - IAA indole-3-acetic acid - azido-IAA 5-N3-7-3H-IAA - pI isoelectric point - PM plasma membrane - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We thank R. Hopkins and I. Gelford for excellent technical work and our colleagues, especially T. Wolpert and D.L. Rayle, for many helpful discussions. This work was supported by grants to T.L.L. from National Science Foundation (DCB 8904114), National Aeronautics and Space Administration (NAGW 1253) and by a grant to D.L. Rayle and T.L.L. from U.S. Department of Agriculture (90-37261-5779). G.R.H. is supported by a National Aeronautics and Space Administration Predoctoral Fellowship (NGT 50455).  相似文献   

3.
4.
We recently reported that cultivation of oat (Avena sativa L.) without phosphate resulted in plasma membrane phosphoglycerolipids being replaced to a large extent by digalactosyldiacylglycerol (DGDG) (Andersson, M. X., Stridh, M. H., Larsson, K. E., Liljenberg, C., and Sandelius, A. S. (2003) FEBS Lett. 537, 128-132). We report here that DGDG is not the only non-phosphorous-containing lipid that replaces phospholipids but that also the content of glucosylceramides and sterolglycosides increased in plasma membranes as a response to phosphate starvation. In addition, phosphate deficiency induced similar changes in lipid composition in the tonoplast. The phospholipid-to-glycolipid replacement apparently did not occur to any greater extent in endoplasmic reticulum, Golgi apparatus, or mitochondrial inner membranes. In contrast to the marked effects on lipid composition, the polypeptide patterns were largely similar between root plasma membranes from well-fertilized and phosphate-limited oat, although the latter condition induced at least four polypeptides, including a chaperone of the HSP80 or HSP90 family, a phosphate transporter, and a bacterial-type phosphoesterase. The latter polypeptide reacted with an antibody raised against a phosphate deficiency-induced phospholipase C from Arabidopsis thaliana (Nakamura, Y., Awai, K., Masuda, T., Yoshioka, Y., Takamiya, K., and Ohta, H. (2005) J. Biol. Chem. 280, 7469-7476). In plasma membranes from oat, however, a phospholipase D-type activity and a phosphatidic acid phosphatase were the dominant lipase activities induced by phosphate deficiency. Our results reflect a highly developed plasticity in the lipid composition of the plasma membrane and the tonoplast. In addition, phosphate deficiency-induced alterations in plasma membrane lipid composition may involve different sets of lipid-metabolizing enzymes in different plant tissues or species, at different stages of plant development and/or at different stages of stress adjustments.  相似文献   

5.
Liu D  Tu L  Wang L  Li Y  Zhu L  Zhang X 《Plant cell reports》2008,27(8):1385-1394
Cotton fiber (Gossypium hirsutum L. and G. barbadense L.) is a good model for studies of plant cell elongation and cell wall biogenesis. Aquaporins are ancient membrane channel proteins that facilitate the permeation of water across biological membranes. We studied GhPIP1-2, encoding plasma membrane intrinsic protein, and GhgammaTIP1, encoding tonoplast intrinsic protein, during cotton fiber development. The full-length cDNAs of GhPIP1-2 and GhgammaTIP1 were obtained through 5' RACE. The deduced amino acid sequences of GhPIP1-2 and GhgammaTIP1 share high sequence identity with aquaporins from diverse plant species. Phylogenetic analysis of GhPIP1-2 and GhgammaTIP1 with other plant aquaporins showed that GhPIP1-2 belongs to the PIP1 group of the PIP subfamily and GhgammaTIP1 belongs to the gammaTIP group of the TIP subfamily. GhPIP1-2 and GhgammaTIP1 contain three and two introns, respectively. Genomic Southern blot analysis indicated that GhPIP1-2 and GhgammaTIP1 have several copies and multiple homologous genes in allotetraploid cotton. Northern blot analysis with gene-specific probes and real-time PCR demonstrated that GhPIP1-2 and GhgammaTIP1 are predominantly expressed during cotton fiber elongation, with the highest expression levels at 5 days post-anthesis. Moreover, expression patterns of the two genes in G. hirsutum and G. barbadense are similar, whereas the expression levels in G. barbadense are much lower than that in G. hirsutum. The high and preferential expression of GhPIP1-2 and GhgammaTIP1 during fiber cell elongation suggests that they may play important roles in supporting the rapid influx of water into vacuoles during cotton fiber cell expansion.  相似文献   

6.
7.
Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.

Charge-based membrane fractionation techniques and tandem mass spectrometry combined with proteomic and lipidomic approaches reveal membrane-specific lipid remodeling in plants during salt stress.  相似文献   

8.
The tonoplast is usually characterized by the presence of two electrogenic proton pumps: a vacuolartype H+-ATPase and a pyrophosphatase, as well as a putative water-channel-forming protein (γ-TIP). Using a post-embedding immunogold labelling technique, we have detected the presence of these transport-protein complexes not only in the tonoplast, but also in the plasma membrane and trans Golgi elements of maturing pea (Pisum sativum L.) cotyledons. These ultrastructural observations are supported by Western blotting with highly purified plasma-membrane fractions. In contrast to the vacuolar-type H+-ATPase, whose activity was not measurable, considerable pyrophosphatase activity was detected in the plasma-membrane fraction. These results are discussed in terms of a possible temporary repository for tonoplast proteins en route to the vacuole.  相似文献   

9.
The temperature dependence of the activity of ion channels was investigated, by means of the patch-clamp technique in the 'whole-cell' configuration, using protoplasts and vacuoles isolated form Arabidopsis thaliana L. cultured cells. The effect of temperature changes in the range 11–22°C was tested on the hyperpolarization and depolarization-activated K+ currents in the plasma membrane and on the hyperpolarization-activated K currents in the tonoplast (vacuolar membrane). All 3 kinds of currents were unaffected by increasing temperature up to 15°C and were activated between 15 and 20°C.  相似文献   

10.
The uptake of hexoses in higher plant cells is thought to be catalyzed by an H+/hexose contrasporter in the plasma membrane. Transport studies with isolated plant vacuoles indicate that, at the tonoplast, a second hexose transporter is located with properties different from the plasma membrane transporter. Recently membrane vesicles of high purity and defined orientation have been used for a more rigorous individual characterization of these two carriers. Concomitantly, a cDNA for the inducible H+/hexose cotransporter of the green alga Chlorella has been sequenced and shown to exhibit homology to a group of hexose transporters (for facilitated diffusion) of other eukaryotic and prokaryotic organisms. With a probe derived from the Chlorella sequence, the first plant gene for an H+/hexose contransporter ( Arabidopsis thaliana ) has been isolated, opening the route to molecular studies of structure, function and evolution of the hexose transporters of higher plants. The present review discusses recent work on the kinetic characterization and identification of the higher plant plasma membrane and tonoplast hexose transporters as well as their respective cellular functions. Furthermore, perspectives for future research on the plant hexose transporters are outlined.  相似文献   

11.
Summary Membrane potential and resistance were recorded from parenchymal cells of oat (Avena) coleoptiles, using one and two intracellular electrodes. Membrane potential is largest (–100 mV) in impalements with low input resistance (2–4 M), and is less negative (–50 mV) in penetrations with high input resistance (> 20 m). The interpretation is that the electrode lodges in the vacuole which is positive to the cytoplasm (but still negative to the external solution), and that measurements of net membrane potential are compromised to varying degrees by leakage shunts introduced across the high resistance vacuolar membrane by the electrode. This conclusion is supported by several additional lines of evidence. (1) It is possible to convert large-R/small-V impalements into small-R/large-V penetrations by passing excess current through the electrode or by briefly ringing the capacitance neutralization circuit in the amplifier. The cells usually recover their resistance in a few minutes, with a concomitant decrease in the negativity of the membrane potential. (2) Changes in external [K] affect the measuree potential by an amount that is independent of the input resistance of the impalement. This is consistent with an effect of [K] o on the potential of the plasma membrane and the occurrence of leakage shunts primarily at the tonoplast. (3) Quantitatively, the effects of a change in [K] o on resistance indicate that nearly 90 percent of the input resistance of unshunted cells resides in the tonoplast. (4) The effects of metabolic inhibitors (DNP, CN) on potential are smaller in large-R than in small-R impalements. This observation suggests there are electrogenic pumps contributing to the membrane potential at both the plasmalemma and tonoplast. Finally, we conclude that with an electrode in the vacuole it is possible to record potentials that are dominated by the contribution of the plasma membrane, provided care is taken to select impalements combining both large, negative potential and low input resistance.  相似文献   

12.
In crude extracts of plant tissue, the Mr = 100,000 proton-pumping ATPase constitutes less than 0.01% of the total cell protein. A large-scale purification procedure is described that has been used to obtain extensive protein sequence information from this enzyme. Plasma membrane vesicles enriched in ATPase activity were obtained from extracts of oat roots by routine differential and density gradient centrifugation. Following a detergent wash, the ATPase was resolved from other integral membrane proteins by size fractionation at 4°C in the presence of lithium dodecyl sulfate. After carboxymethylation of cysteine residues and removal of detergent, the ATPase was digested with trypsin and resultant peptide fragments separated by reverse phase high performance liquid chromatography. Peptides were recovered with high yield and were readily sequenced by automated Edman degradation on a gas-phase sequencer. Of the eight peptides sequenced, six showed strong homology with known amino acid sequences of the fungal proton-pumping and other cation-transporting ATPases.  相似文献   

13.
In rats changes in plasma membrane enzyme activities due to Gal-N intoxication were studied by enzymehistochemical methods. The bile canalicular 5'-nucleotidase and nucleoside polyphosphatase activities decreased; the sinusoidal 5'-nucleotidase remained unchanged. The bile canalicular leucyl-beta-naphthyl-amidase showed an increase in activity; the alkaline phosphatase activity remained unchanged. In contrast to the spotty necrosis, changes in plasma membrane enzyme activities were seen in all liver cells, suggesting that changes of these activities, occurring after Gal-N treatment, do not correlate with cell death. The conclusion was drawn that the deviations of the enzyme activities might be due to changes in the lipid environment of the enzyme proteins in the membrane. With the exception of alkaline phosphatase, partial hepatectomy caused the same changes in enzyme activities as did Gal-N intoxication. Nevertheless Gal-N administration to partial hepatectomized rats did not lead to hepatic necrosis. Galactose given simultaneously or within two hours after Gal-N prevented both changes in plasma membrane enzyme activities and hepatocellular damage. This suggests an important role of galactolipids and galactoproteins in the plasma membrane alterations.  相似文献   

14.
The strategies developed by plants to avoid the toxicity of cadmium (Cd) and other heavy metals involve active sequestration of metals into the apoplast and vacuoles. The protein systems excluding heavy metals from the cell cytosol localize to the plasma membrane and tonoplast and are energized either by ATP or by the electrochemical gradient generated by H(+)-ATPase or by V-ATPase and pyrophosphatase (PPase), respectively. In this work, a comparative study on the contribution of both the plasma membrane and tonoplast in the active detoxification of plant cells after treatment with Cd was performed. The studies using plants treated and untreated with Cd reveal that both, H(+)-coupled and MgATP-driven efflux of Cd across plasma membranes and tonoplast is markedly stimulated in the presence of Cd in the environment. Previous studies on plasma-membrane localized H(+)-coupled Cd efflux together with the present data demonstrating tonoplast H(+)/Cd(2+) antiport activity suggest that H(+)-coupled secondary transport of Cd displays a lower affinity for Cd when compared with Cd primary pumps driven by MgATP. In addition, it is shown that MgATP-energized Cd efflux across both membranes is significantly enhanced by cysteine, dithiothreitol, and glutathione. These results suggest that Cd is excluded from the cytosol through an energy-dependent system as a free ion as well as a complexed form. Although both membranes contribute in the active exclusion of ionized and complexed Cd from the cytosol, the overall calculation of Cd accumulation in the everted plasma membranes and vacuolar vesicles suggests that the tonoplast and vacuole have a major function in Cd efflux from the cytosol in the roots of cucumber subjected to Cd stress.  相似文献   

15.
1. ATP-dependent calcium uptake by a rabbit brain vesicular fraction (microsomes) was studied in the presence of phosphate or oxalate. These anions, which are known to form insoluble calcium salts, increased the rate of calcium uptake and the capacity of the vesicles for calcium accumulation. 2. The degree of activation depended on the concentration of phosphate or oxalate. Under optimal conditions, phosphate promoted a 5-fold increase in the amount of calcium stored at steady state. This level was 200-250 nmol Ca-2+/mg protein. 3. Initial rate of calcium uptake followed Michaelis-Menten kinetics with an apparent Km for calcium of 6.7-10-minus 5 M and a V of 44 nmol/min per mg protein. Optimal pH was 7.0. With 2 mM ATP, optimal Mg-2+ concentration was 2 mM. 4. Dintrophenol and NaN3 inhibited calcium uptake in a mitochondria-enriched fraction but not in the microsomal fraction. 5. Calcium uptake activity was compared in the six subfractions prepared from the whole microsomal fraction by means of a sucrose density gradient fractionation. 6. The Mg-2+-dependent ATPase activity of brain microsomes was activated by calcium. Maximal activation was attained with 100 muM CaCl2. Greater calcium concentrations caused a progressive inhibition. 7. The data suggest that the ATP-dependent calcium uptake in brain microsomes, as in muscle microsomes, is brought about by an active transport process, calcium being accumulated as a free ion inside the vesicles.  相似文献   

16.
17.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   

18.
Ribonucleoparticle (i.e. ribosome and SRP)-independent transport of proteins into mammalian microsomes is stimulated by a cytosolic ATPase which involves proteins belonging to the hsp70 family. Here we addressed the question of whether there are additional nucleoside triphosphate requirements involved in this transport mechanism. We employed a purified presecretory protein which upon solubilization in dimethyl sulfoxide and subsequent dilution into an aqueous buffer was processed by and transported into mammalian microsomes in the absence of the cytosolic ATPase. Membrane insertion of this precursor protein was found to depend on the hydrolysis of ATP and to involve a microsomal protein which can be photoaffinity inactivated with azido-ATP. Furthermore, a microsomal protein with a similar sensitivity towards photoaffinity modification with azido-ATP was observed to be involved in ribonucleoparticle-dependent transport. We suggest that a novel microsomal protein which depends on ATP hydrolysis is involved in membrane insertion of both ribonucleoparticle-dependent and -independent precursor proteins.  相似文献   

19.
Translocation of 14C-labelled assimilates down the petioles was studied in intact plants of Pelargonium zonale (L.) L'Hérit ex Ait. The central bundle of the petiole was dissected out and treated with solutions of various inhibitors. Whereas cytochalasin B had no effect on 14C-translocation, a distinct and localized inhibition was caused by CCCP (10-7 M), antimycin (5×10-5 M), atractylate (5×10-5 M), and valinomycin (10-5 M) without any significant change in the proportion of [14C]sucrose in the translocate. The inhibition of translocation is inferred both by accumulation of 14C distal to and a decrease in 14C concentration basal to the treated petiolar region. If valinomycin was fed into the transpiration stream by flapping the peripheral bundles of the petioles an increased labeling of sugar phosphates occurred in the 14C fed leaf. Plasmolysis tests indicated that whereas CCCP interfered with the semipermeability of phloem cell membranes, valinomycin had no such effect. The results with valinomycin suggest a compartmentation of potassium ions for the translocation process but are ambiguous as to whether or not a potassium pump is involved.Dedicated to Wilhelm Halbsguth, Kiel to his 65th birthday  相似文献   

20.
The final step in exocytosis is the fusion of synaptic vesicle membrane with the synaptosomal plasma membrane, leading to the release of the neurotransmitters. We have reconstituted this fusion event in vitro, using isolated synaptic vesicles and synaptosomal plasma membranes from the bovine brain. The membranes of synaptic vesicles were loaded with the lipid--soluble fluorescent probe octadecylrhodamine B at the concentration that resulted in self-quenching of its fluorescence. The vesicles were then incubated with synaptosomal plasma membranes at 37 degrees C and fusion was measured through the dilution-dependent de-quenching of the fluorescence of the probe. Synaptic vesicles by themselves did not fused with plasma membrane, only addition of ATP induced the fusion. W-7 and trifluoroperasine, the drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the ATP-induced fusion synaptic vesicles and synaptosomal plasma membranes. Our results indicate that the membrane fusion in the nerve terminals during exocytosis may be under direct control of calmodulin-dependent protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号