首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inorganic cofactors (Mn, Ca2+ and Cl-) are essential for oxidation of H2O to O2 by Photosystem II. The Mn reductants NH2OH and its N-methyl derivatives have been employed as probes to further examine the interactions between these species and Mn at the active site of H2O oxidation. Results of these studies show that the size of a hydroxylamine derivative regulates its ability to inactivate O2 evolution activity, and that this size-dependent inhibition behavior arises from the protein structure of Photosystem II. A set of anions (Cl-, F- and SO4 2-) is able to slow NH2OH and CH3NHOH inactivation of intact Photosystem II membranes by exerting a stabilizing influence on the extrinsic 23 and 17 kDa polypeptides. In contrast to this non-specific anion effect, only Cl- is capable of attenuating CH3NHOH and (CH3)2NOH inhibition in salt-washed preparations lacking the 23 and 17 kDa polypeptides. However, Cl- fails to protect against NH2OH inhibition in salt-washed membranes. These results indicate that the attack by NH2OH and its N-methyl derivatives on Mn occurs at different sites in the O2-evolving complex. The small reductant NH2OH acts at a Cl--insensitive site whereas the inhibitions by CH3NHOH and (CH3)2NOH involve a site that is Cl- sensitive. These findings are consistent with earlier studies showing that the size of primary amines controls the Cl- sensitivity of their binding to Mn in the O2-evolving complex.Abbreviation MES 4-morpholinoethanesulfonic acid - PS II Photosystem II  相似文献   

2.
《BBA》1986,850(1):21-32
Wheat O2-evolving Photosystem II (PS II) membranes having a PS II unit of approx. 200 chlorophylls (Chl), approx. 4 Mn/200 Chl, less than 1 P-700/3000 Chl and an electron-acceptor pool of approx. 2.5 equiv./PS II were analyzed and compared with wheat PS II membranes depleted (at least 90%) of the 17 and 23 kDa proteins by NaCl extraction during Triton X-100 isolation of membranes. Extraction of these proteins caused approx. 50% decrease in O2 evolution in any light regime and an increase of approx. 2 equiv./PS II of the electron-acceptor pool, but affected neither Mn abundance, photoreduction of DCIP by tetraphenylboron, or N2 yield (from NH2OH) from a single flash. Mass spectrometric analyses of O2 flash yields in the presence of potassium ferricyanide showed that both chloroplasts and the unextracted PS II membranes yielded oscillations compatible with S0/S1/S2/S3 of 25:75:0:0 and α (0.1) and β (0.05). Depletion of 17 and 23 kDa proteins resulted in a two-fold increase in α, approx. 25–40% disconnection of the S state complex from the PS II trap complex but with no change in β. Preincubation of control or extracted PS II membranes with potassium ferricyanide permitted a significant double-hit on the first flash. In the absence of an added electron acceptor, N2 flash yields were more sustained with 17 and 23 kDa depleted than with 17 and 23 kDa sufficient PS II membranes. In contrast, no significant O2 flash yields were observed with extracted PS II preparations under these conditions (control PS II membranes showed a predictable O2 pattern before damping after only 5–6 flashes). These results suggest that extraction of the 17 and 23 kDa proteins results in an increase of pool size on the PS II acceptor side (seen as unmasking ‘Component C’). ‘Component C’ can mediate electron transfer from Q to Z+ (S2).  相似文献   

3.
We have studied the inactivation of the water-oxidizing complexby exogenous, ‘general’ reductants in various typesof PS II membrane. Extraction of the 33, 23 and 17 kDa proteinsfrom PS II membranes rendered the functional Mn susceptibleto rapid solubilization by reductants such as hydroquinone,benzidine and ascorbate, while water analogs, such as NH2OH,inactivated the complex regardless of the presence of PS IIextrinsic proteins. The extent of the inactivation was dependenton the hydrophobicity of the reductants examined. Diphenylcarbazide,an efficient electron donor to Z+ and D+, did not inactivatethe Mn complex. As reported earlier [Ghanotakis et al. (1984)Biochim. Biophys. Acta 767: 524], weak illumination deceleratedthe inactivation of the complex by the various reductants. Kineticanalyses of the flash-induced protection provided evidence aboutthe nature of the light state that was not susceptible to thereductants. This state was generated and decayed with half timesof approximately 0.5 and 9 s, respectively. However, such lightprotection was diminished under Cl-depleted conditions,at slightly alkaline pH, or when ascorbate was employed as areductant. Furthermore, we observed that the oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine,which reacts with the Mn complex, was accomplished as a biphasicreaction. The amount of the fast phase, which was almost eliminatedafter the reconstitution of the 33 kDa protein and Ca2+, wasapproximately 7 electron equivalents per 200 Chl. From theseresults, it is likely that the bulky, ‘general’reductants reduce the functional Mn directly by solubilizingMn from the complex in the same way as do the water analogs.The effectiveness of these reductants in the photoactivationof the apo-water-oxidizing complex is also discussed. (Received September 13, 1989; Accepted March 12, 1990)  相似文献   

4.
Dark-grown cotyledons of pine (Pinus thunbergit) did not exhibitO2 evolution, but this capability was rapidly activated by illuminationfor a short period (photoactivation). To examine the biochemicalchanges which accompany the process of photoactivation in gymnosperms,a method enabling the preparation of highly active O2-evolvingphotosystem II (PS II) membranes was applied to light-grown,dark-grown, and photoactivated cotyledons. PS II membranes preparedfrom light-grown cotyledons exhibited high O2-evolving activity,and contained all the intrinsic proteins as well as the threeextrinsic proteins (32, 23 and 17 kDa) associated with PS II.These membranes were also found to contain 4.4 Mn and 0.83 Ca/PSII reaction center. PS II membranes from dark-grown cotyledonscontained all the intrinsic proteins, but preserved only 32kDa extrinsic protein, and zero Mn and 0.85 Ca/PS II reactioncenter. The two extrinsic proteins (23 and 17 kDa) absent inthe PS II membranes from dark-grown cotyledons were, however,present as mature forms in whole thylakoid membranes from thecorresponding sample. The PS II membranes isolated from photoactivatedcotyledons showed a high activity of O2 evolution and retainedthe three extrinsic proteins, 5.3 Mn and 1.1 Ca/PS II reactioncenter, respectively. The results indicated that Mn and thetwo extrinsic proteins were tightly integrated in the O2-evolvingapparatusduring the process of photoactivation but integration of Capreceded the integration of Mn by photoactivation. (Received December 9, 1991; Accepted February 1, 1992)  相似文献   

5.
《BBA》1987,890(1):6-14
The removal of peripheral membrane proteins of a molecular mass of 17 and 23 kDa by washing of spinach Photosystem-II (PS II) membranes in 1 M salt between pH 4.5 and 6.5 produces a minimal loss of the S1 → S2 reaction, as seen by the multiline EPR signal for the S2 state of the water-oxidizing complex, while reversibly inhibiting O2 evolution. The multiline EPR signal simplifies from a ‘19-line’ spectrum to a ‘16-line’ spectrum, suggestive of partial uncoupling of a cluster of 3 or 4 to yield photo-oxidation of a binuclear Mn site. Alkaline salt washing progressively releases a 33 kDa peripheral protein between pH 6.5 and 9.5, in direct parallel with the loss of O2 evolution and the S2 multiline EPR signal. The 33 kDa protein can be partially removed (20%) at pH 8.0 prior to managanese release. Salt treatment releases four Mn ions between pH 8.0 and 9.5 with the first 2 or 3 Mn ions released cooperatively. A common binding site is thus suggested in agreement with earlier EPR spectroscopic data establishing a tetranuclear Mn site. At least two of these Mn ions bind directly at a site in the PS II complex for which photooxidation by the reaction center is controlled by the 33 kDa protein. The washing of PS II membranes with 1 M CaCl2 to affect the release of the 33 kDa protein, while preserving Mn binding to the membrane (Ono, T.-A. and Inoue, Y. (1983) FEBS Lett. 164, 255–260), is found to leave some 33 kDa protein undissociated in proportion to the extent of O2 evolution and S2 multiline yield. These depleted membranes do not oxidize water or produce the normal S2 state without the binding of the 33 kDa protein. A method for the accurate determination of relative concentrations of the peripheral membrane proteins using gel electrophoresis is presented.  相似文献   

6.
The NMR paramagnetic relaxation enhancement (NMR-PRE) produced in the solvent proton resonance by manganese in the S0 and S2 states of the oxygen evolving center (OEC) has been recorded for three Photosystem II (PS II)-enriched preparations: (1) PS II-enriched thylakoid membrane fragments (TMF-2 particles); (2) salt-washed (2M NaCl) TMF-2 particles; and (3) the octylglucopyranoside (OGP)-solubilized PS II complex. The second and third preparations, but not the first, are depleted of the peripheral 17 and 23 kD polypeptides associated with the OEC. It has been proposed that depletion of these polypeptides increases the exposure of OEC manganese to the aqueous phase. The NMR-PRE response measures the quantity (T1m+m)-1, where T1m is the spin relaxation time and m is the mean residence time with respect to chemical exchange reactions of solvent protons in the manganese coordination sphere, and, thus, the NMR-PRE provides a direct measure of the solvent proton chemical exchange rate constant m -1. This study tested whether the 17 and 23 kD polypeptides shield the OEC from the solvent phase and whether their depletion enhances the S2 and S0 NMR-PRE signals by removing a kinetic barrier to the solvent proton chemical exchange reaction. The amplitude of the S2 NMR-PRE signal, measured in its chemical exchange-limited regime (m>T1m), is slightly decreased, rather than increased, in preparations (2) and (3) relative to (1), indicating that removal of the 17 and 23 kD polypeptides slightly slows, rather than accelerates, the rate-limiting steps of the solvent proton chemical exchange reactions. In addition, the lifetime of the S2 state was shortened several-fold in the solubilized PS II complex and in salt-washed TMF-2 membranes relative to untreated TMF-2 control samples. The S0 NMR-PRE signal, which is present in TMF-2 suspensions, was not detected in suspensions of the solubilized PS II complex, even though these samples contained high concentrations of active manganese centers (approximately double those of the TMF-2 control) and exhibited an S2 NMR-PRE signal of comparable amplitude to that of the TMF-2 preparation. These results suggest that the 17 and 23 kD extrinsic polypeptides do not shield the NMR-visible water binding site in the OEC from the aqueous phase, although their removal substantially alters the proton relaxation efficiency by shortening T1m.Abbreviations ADRY acceleration of the deactivation reactions of the water splitting enzyme Y - BBY Photosystem II-enriched membrane fragments prepared by the method of Berthold et al. (1981) - CCCP carbonyl cyanide m-chlorophenyl hydrazone - Chl chlorophyll - DCBQ 2,5-dichlorobenzoquinone - MES morpholinoethanesulfonate - NMR nuclear magnetic resonance - OEC oxygen evolving complex - OGP octylglucopyranoside - PRE paramagnetic relaxation enhancement - PS II Photosystem II - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TMF-2 Photosystem II-enriched thylakoid membrane fragments prepared by the method of Radmer et al. (1986) - T1, T2 longitudinal and transverse nuclear spin relaxation times  相似文献   

7.
Selective solubilization of Photosystem II membranes with the non-ionic detergent octyl thioglucopyranoside has allowed the isolation of a PS II system which has been depleted of the 22 and 10 kDa polypeptides but retains all three extrinsic proteins (33, 23 and 17 kDa). The PS II membranes which have been depleted of the 22 and 10 kDa species show high rates of oxygen evolution activity, external calcium is not required for activity and the manganese complex is not destroyed by exogenous reductants. When we compared this system to control PS II membranes, we observed a minor modification of the reducing side, and a conversion of the high-potential to the low-potential form of cytochrome b 559.Abbreviations Chl- chlorophyll - DCBQ- 2,5-dichloro-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ESR- electron spin resonance - MES- 2-(N-morpholino)ethanesulfonic acid - OTG- octyl--d-thioglucopyranoside - PS II- Photosystem II - PEG- polyethylene glycol, Mr=6000 - Tris- 2-amino-2-hydroxyethylpropane-1,3-diol  相似文献   

8.
Treatment of intact thylakoid membranes with Triton X-100 at pH 6 produces a preparation of the PS II complex capable of high rates of O2 evolution. The preparation contains four managanese, one cytochrome b-559, one Signal IIf and one Signal IIs per 250 chlorophylls. By selective manipulation of the preparation polypeptides of approximate molecular weights of 33, 23 and 17 kDa can be removed from the complex. Release of 23 and 17 kDa polypeptides does not release functional manganese. Under these conditions Z+ is not readily and directly accessible to an added donor (benzidine) and it appears as if at least some of the S-state transitions occur. Evidence is presented which indicates that benzidine does have increased access to the oxygen-evolving complex in these polypeptide depleted preparations. Conditions which release the 33 kDa species along with Mn and the 23 and 17 kDa polypeptides generate an alteration in the structure of the oxidizing side of PS II, which becomes freely accessible to benzidine. These findings are examined in relationship to alterations of normal S-state behavior (induced by polypeptide release) and a model is proposed for the organization of functional manganese and polypeptides involved in the oxygen-evolving reaction.  相似文献   

9.
Nedunchezhian  N.  Muthuchelian  K.  Bertamini  M. 《Photosynthetica》2000,38(4):607-614
Changes in various components of photosynthetic apparatus during the 6-d dark incubation at 25 °C of detached control and DCMU-treated Triticum aestivum L. leaves were examined. The rate of photosystem 2 (PS2) activity was decreased with increase of the time of dark incubation in control leaves. In contrast to this, DCMU-treated leaves demonstrated high stability by slowing down the inactivation processes. Diphenyl carbazide and NH2OH restored the PS2 activity more in control leaves than in DCMU-treated leaves. Mn2+ failed to restore the PS2 activity in both control and DCMU-treated samples. Similar results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of PS2 activity in dark incubated control leaves was primarily due to the loss of D1, 33, and 23 kDa extrinsic polypeptides and 28-25 kDa LHCP2 polypeptides.  相似文献   

10.
A brief treatment at pH 3.0 of Photosystem II (PS II) membranescontaining two bound Ca2+ from rice resulted in strong suppressionof oxygen evolution concomitant with extraction of one Ca2+and the lost activity was restored on addition of 50 mM Ca2+.However, inactivation of oxygen evolution by low pH-treatmentof oxygen-evolving PS II complexes containing only one Ca2+from a rice chlorophyll b-deficient mutant was not associatedwith extraction of the bound Ca2+, although oxygen evolutionwas markedly enhanced by the addition of Ca2+ to the treatedcomplexes. Thus, the acid-inactivation of oxygen evolution cannotbe related to extraction of Ca2+. On the other hand, low pH-treatmentwas found to share the following common features with NaCl-treatmentwhich also causes a Ca2+-reversible inactivation of oxygen evolution.(1) Exposure of PS II membranes to pH 3.0 resulted in solubilizationof the 23 and 17 kDa extrinsic proteins, although the releasedproteins rebound to the membranes when pH was raised to 6.5.(2) There was an apparent heterogeneity in the binding affinityof Ca2+ effective in restoration of the oxygen-evolving activity.(3) Low pH-treated preparations required a higher concentrationof Ca2+ for the maximum reactivation of oxygen evolution thandid NaCl-washed preparations. This was also the case with Sr2+,which stimulated oxygen evolution of both low pH-treated andNaCl-washed PS II membranes to smaller extents. When the extrinsic23 and 17 kDa proteins had been removed, however, Ca2+ concentrationdependence of oxygen evolution in low pH-treated membranes becamesimilar to that in NaCl-washed PS II preparations and the changeswere largely reversed by rebinding of the two proteins. Theseresults strongly suggest that low pH-treatment and NaCl-washinvolve similar mechanisms of Ca2+-dependent reactivation. 1 Present address: Solar Energy Research Group, The Instituteof Physical and Chemical Research (RIKEN), Wako, Saitama, 351-01Japan (Received August 27, 1990; Accepted February 12, 1991)  相似文献   

11.
The contents of chlorophyll (Chl) and carotenoids (Car) per fresh mass were lower in shade needles than in sun needles. Ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and contents of soluble proteins were also significantly lower in shade needles. In isolated thylakoids, a marked lower rate of whole chain and photosystem (PS) 2 activities were observed in shade needles. Smaller lower rate of PS1 activity was also observed in shade needles. The artificial exogenous electron donors, diphenyl carbazide (DPC) and NH2OH, significantly restored the loss of PS2 activity in shade needles. Similar results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked lower rate of PS2 activity in shade needles was due to the lower contents of 47, 33, 28–25, 23, and 17 kDa polypeptides. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the watersplitting complex was diminished significantly in shade needles.  相似文献   

12.
Photosynthetic oxygen evolution by photosystem II particleswas inactivated by treatment with NaCl, NH2OH or high pH. Whenthe degree of inactivation was compared with the degree of releasefrom the particles of Mn and three polypeptides having molecularmasses of 33, 24 and 18kdaltons, two types of inactivation werefound: one, brought about with 960 mM NaCl, was related to therelease of the 24 kdalton polypeptide, and the other, broughtabout with 1.5 mM NH2OH or high pH, seemed to be related tothe release of Mn. 1Present address: Department of Chemistry, Faculty of Science,Toho University, Miyama 2-2-1, Funabashi 274, Japan. (Received January 31, 1983; Accepted March 28, 1983)  相似文献   

13.
Muthuchelian  K.  Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2001,39(3):411-418
Photosynthetic electron transfer was studied in thylakoids isolated from control and DCMU-grown wheat (Triticum aestivum L.) seedlings. When exposed to high temperature (HT) and high iradiance (HI), thylakoids showed large variations in the photosynthetic electron transport activities and thylakoid membrane proteins. A drastic reduction in the rate of whole electron transport chain (H2O MV) was envisaged in control thylakoids when exposed to HT and HI. Such reduction was mainly due to the loss of photosystem 2, PS2 (H2O DCBQ) activity. The thylakoids isolated from seedlings grown in the presence of DCMU showed greater resistance to HT and HI treatment. The artificial exogenous electron donors MnCl2, DPC, and NH2OH failed to restore the HI induced loss of PS2 activity in both control and DCMU thylakoids. In contrast, addition of DPC and NH2OH significantly restored the HT induced loss of PS2 activity in control thylakoids and partially in DCMU thylakoids. Similar results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of PS2 activity in control thylakoids was evidently due to the loss of 33, 23, and 17 kDa extrinsic polypeptides and 28-25 kDa LHCP polypeptides.  相似文献   

14.
J R Shen  M Ikeuchi  Y Inoue 《FEBS letters》1992,301(2):145-149
A highly purified, native photosystem II (PS II) core complex was isolated from thylakoids of Synechococcus vulcanus, a thermophilic cyanobacterium by lauryldimethylamine N-oxide (LDAO) and dodecyl beta-D-maltoside solubilization. This native PS II core complex contained, in addition to the proteins that have been well characterized in the core complex previously purified by LDAO and Triton X-100, two more extrinsic proteins with apparent molecular weights of 17 and 12 kDa. These two proteins were associated with the core complex in stoichiometric amounts and could be released by treatment with 1 M CaCl2 or 1 M alkaline Tris but not by 2 M NaCl or low-glycerol treatment, indicating that they are the real components of PS II of this cyanobacterium. N-Terminal sequencing revealed that the 17 and 12 kDa proteins correspond to the apoprotein of cytochrome c550, a low potential c-type cytochrome, and the 9 kDa extrinsic protein previously found in a partially purified PS II preparation from Phormidium laminosum, respectively. In spite of retention of these two extrinsic proteins, no homologues of higher plant 23 and 17 kDa extrinsic proteins could be detected in this cyanobacterial PS II core complex.  相似文献   

15.
Degradation of the D1 protein of the Photosystem II (PS II) complex was studied in the Fad6/desA::Kmr mutant of a cyanobacterium Synechocystis sp. PCC 6803. The D1 protein of the mutant was degraded during solubilization of thylakoid membranes with SDS at 0°C in darkness, giving rise to the 23 kDa amino-terminal and 10 kDa carboxy-terminal fragments. Moreover, the D2 and CP43 proteins were also degraded under such conditions of solubilization. Degradation of the D2 protein generated 24, 17 and 15.5 kDa fragments, and degradation of the CP43 protein gave rise to 28, 27.5, 26 and 16 kDa fragments. The presence of Ca2+ and urea protected the D1, D2 and CP43 proteins against degradation. Degradation of the D1 protein was also inhibited by the presence of a serine protease inhibitor suggesting that the putative protease involved belonged to the serine class of proteases. The protease had the optimum activity at pH 7.5; it was active at low temperature (0°C) but a brief heating (65°C) during solubilization destroyed the activity. Interestingly, the protease was active in isolated thylakoid membranes in complete darkness, suggesting that proteolysis may be a non-ATP-dependent process. Proteolytic activity present in thylakoid membranes seemed to reside outside of the PS II complex, as demonstrated by the 2-dimensional gel electrophoresis. These results represent the first (in vitro) demonstration of strong activity of a putative ATP-independent serine-type protease that causes degradation of the D1 protein in cyanobacterial thylakoid membranes without any induction by visible or UV light, by active oxygen species or by any chemical treatments.  相似文献   

16.
R.R. Sharp  C.F. Yocum 《BBA》1981,635(1):90-104
The kinetics of Mn release during NH2OH inactivation of the water oxidizing reaction is largely insensitive to the S-state present during addition of NH2OH. This appears to reflect reduction by NH2OH of higher S-states to a common more reduced state (S0 or S?1) which alone is susceptible to NH2OH inactivation. Sequences of saturating flashes with dark intervals in the range 0.2–5 s?1 effectively prevent NH2OH inactivation and the associated liberation of manganese. This light-induced protection disappears rapidly when the dark interval is longer than about 5 s. Under continuous illumination, protection against NH2OH inactivation is maximally effective at intensities in the range 103–104 erg · cm?2 · s?1. This behavior differs from that of NH2OH-induced Mn release, which is strongly inhibited at all intensities greater than 103 erg · cm?2 · s?1. This indicates that two distinct processes are responsible for inactivation of water oxidation at high and low intensities. Higher S-states appear to be immune to the reaction by which NH2OH liberates manganese, although the overall process of water oxidation is inactivated by NH2OH in the presence of intense light. The light-induced protection phenomenon is abolished by 50 μM DCMU, but not by high concentrations of carbonyl cyanide m-chlorophenylhydrazone, which accelerates inactivation reactions of the water-splitting enzyme, Y (an ADRY reagent). The latter compound accelerates both inactivation of water oxidation and manganese extraction in the dark.  相似文献   

17.
Yu H  Xu X  Britt RD 《Biochemistry》2006,45(10):3404-3411
An earlier study shows that a 30 min incubation of spinach PS II submembrane fragments at pH 6.3 in the presence of 10 microM HgCl(2) induces a 40% depletion of the 33 kDa protein without the apparent release of the 17 and 23 kDa proteins [Bernier, M., and Carpentier, R. (1995) FEBS Lett. 360, 251-254]. Here we report that the photosystem II 33 kDa extrinsic protein is fully removed by HgCl(2) added at micromolar and higher concentrations (0.25, 20, and 50 microM), with the 17 and 23 kDa extrinsic proteins and other intrinsic proteins remaining bound to the reaction center. The data presented here put in doubt the "regulatory cap" model of PS II, which follows the OEC-33 kDa-23 kDa-17 kDa binding order, as these results directly demonstrate that the 33 kDa protein can be removed without affecting the binding of the 23 and 17 kDa proteins to the intrinsic subunits of PS II. This suggests that each extrinsic protein may possess its own binding site on PS II. A possible mechanism for HgCl(2) upon the release of the 33 kDa protein is discussed.  相似文献   

18.
《BBA》1985,807(1):64-73
Photosystem II (PS II) particles retaining a high rate of O2 evolution were prepared from a thermophilic cyanobacterium, Synechococcus vulcanus Copeland, and the composition and properties of their peripheral proteins were investigated. The following results were obtained. (1) The O2-evolving PS II particles of S. vulcanus contained only one peripheral protein with a molecular mass of 34000 which corresponded to the 33 kDa protein in higher plant PS II particles, but no other peripheral proteins corresponding to the 24 and 16 kDa proteins of higher plant PS II particles. (2) The cyanobacterial peripheral 34 kDa protein was removed from the particles by 1 M CaCl2-washing concomitant with total inactivation of O2 evolution, and the inactivated O2 evolution was reconstituted to 75% of the original activity by rebinding of this protein back to the washed particles. (3) The cyanobacterial peripheral 34 kDa protein rebound to CaCl2-washed spinach PS II particles and restored O2 evolution to an appreciable extent (28%). (4) The spinach peripheral 33 kDa protein rebound to CaCl2-washed PS II particles of S. vulcanus and partially restored O2 evolution (60%). These results suggested that the peripheral 34 kDa protein of S. vulcanus possesses the determinants for both binding and activity reconstitution identical with those of the peripheral 33 kDa protein of spinach.  相似文献   

19.
Removal of 23 and 17 kDa water-soluble polypeptides from PS II membranes causes a marked decrease in oxygen-evolution activity, exposes the oxidizing side of PS II to exogenous reductants (Ghanotakis, D.F., Babcock, G.T. and Yocum, C.F. (1984) Biochim. Biophys. Acta 765, 388–398) and alters a high-affinity binding site for Ca2+ in the oxygen-evolving complex (Ghanotakis, D.F., Topper, J.N., Babcock, G.T. and Yocum, C.F. (1984) FEBS Lett. 170, 169–173). We have examined further the state of the functional Mn complex in PS II membranes from which the 17 and 23 kDa species have been removed by high-salt treatment. These membranes contain a structurally altered Mn complex which is sensitive to destruction by low concentrations of NH2OH which cannot, in native PS II membranes, cause extraction of functional Mn. In addition to NH2OH, a wide range of other small (H2O2, NH2NH2, Fe2+) and bulky (benzidine, hydroquinone) electron donors extract Mn (up to 80%) from the polypeptide-depleted PS II preparations. This extraction is due to reduction of the functional Mn complex since light, which would generate higher oxidation states within the Mn complex, prevents Mn release by reductants. Release of Mn by reductants does not extract the 33 kDa water-soluble protein implicated in Mn binding to the oxidizing side of PS II, although the protein can be partially or totally extracted from Mn-depleted preparations by exposure to high ionic strength or to high (0.8 M) concentrations of Tris. We view our results as evidence for a shield around the Mn complex of the oxygen-evolving complex comprised of the 33 kDa polypeptide along with the 23 and 17 kDa proteins and tightly bound Ca2+.  相似文献   

20.
It is shown that restoration of photoinduced electron flow with added Mn2+ (measured by photoreduction of DCPIP and photoinduced change of chlorophyll fluorescence yield) in Mn-depleted Photosystem II (PS II) membrane fragments isolated from spinach chloroplasts, is considerably increased by exogenous histidine (His). The stimulating effect of His is not observed if other electron donors (NH2OH or diphenylcarbazide) are used instead of Mn2+. His added alone does not induce electron transfer in Mn-depleted PS II preparations. Investigation of pH dependence of the stimulating effect of 2 mM His shows that the effect is observed only at pH > 5.0, it gives a 50% activation around pH 6.0 and saturates at pH 7.0–7.5. Nearly 200 μM His is required for a 50 effect at pH 7.0. It is suggested that the added His can be involved in stimulation of electron transfer on the donor side of PS II through direct interaction of Mn2+ with deprotonated form(s) of His resulting in formation of Mn–His complexes capable of efficient electron donation to PS II (though it is not excluded that His serves as a base that takes part in proton exchange coupled with redox reactions on the donor side of PS II or as an electron donor to the oxidized Mn).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号