首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In dark-adapted spinach leaves approximately one third of the Photosystem II (PS II) reaction centers are impaired in their ability to transfer electrons to Photosystem I. Although these inactive PS II centers are capable of reducing the primary quinone acceptor, QA, oxidation of QA occurs approximately 1000 times more slowly than at active centers. Previous studies based on dark-adapted leaves show that minimal energy transfer occurs from inactive centers to active centers, indicating that the quantum yield of photosynthesis could be significantly impaired by the presence of inactive centers. The objective of the work described here was to determine the performance of inactive PS II centers in light-adapted leaves. Measurements of PS II activity within leaves did not indicate any increase in the concentration of active PS II centers during light treatments between 10 s and 5 min, showing that inactive centers are not converted to active centers during light treatment. Light-induced modification of inactive PS II centers did occur, however, such that 75% of these centers were unable to sustain stable charge separation. In addition, the maximum yield of chlorophyll fluorescence associated with inactive PS II centers decreased substantially, despite the lack of any overall quenching of the maximum fluorescence yield. The effect of light treatment on inactive centers was reversed in the dark within 10–20 mins. These results indicate that illumination changes inactive PS II centers into a form that quenches fluorescence, but does not allow stable charge separation across the photosynthetic membrane. One possibility is that inactive centers are converted into centers that quench fluorescence by formation of a radical, such as reduced pheophytin or oxidized P680. Alternatively, it is possible that inactive PS II centers are modified such that absorbed excitation energy is dissipated thermally, through electron cycling at the reaction center.Abbreviations A518 absorbance change at 518 nm, reflecting the formation of an electric field across the thylakoid membrane - AFL1 amplitude of the fast (<100 ms) phase of A518 induced by the first of two saturating, single-turnover flashes spaced 30 ms apart - AFL2 amplitude of the fast (<100 ms) phase of A518 induced by the second of two saturating, single-turnover flashes spaced 50 ms apart - DCBQ 2,6-dichloro-p-benzoquinone - Fo yield of chlorophyll fluorescence when QA is fully oxidized - Fm yield of chlorophyll fluorescence when QA is fully reduced - Fx yield of chlorophyll fluorescence when QA is fully reduced at inactive PS II centers, but fully oxidized at active PS II centers - Pheo pheophytin - P680 the primary donor of Photosystem II - PPFD photosynthetic photon flux density - QA Primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

2.
Kenneth Leto  Charles Arntzen 《BBA》1981,637(1):107-117
Despite the total loss of Photosystem II activity, thylakoids isolated from the green nuclear maize mutant hcf1-3 contain normal amounts of the light-harvesting chlorophyll ab pigment-protein complex (LHC). We interpret the spectroscopic and ultrastructural characteristics of these thylakoids to indicate that the LHC present in these membranes is not associated with Photosystem II reaction centers and thus exists in a ‘free’ state within the thylakoid membrane. In contrast, the LHC found in wild-type maize thylakoids shows the usual functional association with Photosystem II reaction centers. Several lines of evidence suggest that the free LHC found in thylakoids isolated from hcf1-3 is able to mediate cation-dependent changes in both thylakoid appression and energy distribution between the photosystems: (1) Thylakoids isolated from hcf1-3 and wild-type seedlings exhibit a similar Mg2+-dependent increase in the short/long wavelength fluorescence emission peak ratio at 77 K. This Mg2+ effect is lost following incubation of thylakoids isolated from either source with low concentrations of trypsin. Such treatment results in the partial proteolysis of the LHC in both membrane types. (2) Thylakoids isolated from both hcf1-3 and wild-type seedlings show a similar Mg2+ dependence for the enhancement of the maximal yield of room temperature fluorescence and light scattering; both Mg2+ effects are abolished by brief incubation of the thylakoids with low concentrations of trypsin (3) Mg2+ acts to reduce the relative quantum efficiency of Photosystem I-dependent electron transport at limiting 650 nm light in thylakoids isolated from hcf1-3. (4) The pattern of digitonin fractionation of thylakoid membranes, which is dependent upon structural membrane interactions and upon LHC in the thylakoids, is similar in thylakoids isolated from both hcf1-3 and wild-type seedlings. We conclude that the surface-exposed segment of the LHC, but not the LHC-Photosystem II core association, is necessary for the cation-dependent changes in both thylakoid appression and energy distribution between the two photosystems, and that the LHC itself is able to transfer excitation energy directly to Photosystem I in a Mg2+-dependent fashion in the absence of Photosystem II reaction centers. The latter phenomenon is equivalent to a cation-induced change in the absorptive cross-section of Photosystem I.  相似文献   

3.
The ratio of Photosystem (PS) II to PS I electron-transport capacity in spinach chloroplasts was compared from reaction-center and steady-state rate measurements. The reaction-center electron-transport capacity was based upon both the relative concentrations of the PS IIα, PS IIβ and PS I centers, and the number of chlorophyll molecules associated with each type of center. The reaction-center ratio of total PS II to PS I electron-transport capacity was about 1.8:1. Steady-state electron-transport capacity data were obtained from the rate of light-induced absorbance-change measurements in the presence of ferredoxin-NADP+, potassium ferricyanide and 2,5-dimethylbenzoquinone (DMQ). A new method was developed for determining the partition of reduced DMQ between the thylakoid membrane and the surrounding aqueous phase. The ratio of membrane-bound to aqueous DMQH2 was experimentally determined to be 1.3:1. When used at low concentrations (200 μM), potassium ferricyanide is shown to be strictly a PS I electron acceptor. At concentrations higher than 200 μM, ferricyanide intercepted electrons from the reducing side of PS II as well. The experimental rates of electron flow through PS II and PS I defined a PS II/PS I electron-transport capacity ratio of 1.6:1.  相似文献   

4.
Electron transport from Photosystem II to Photosystem I of spinach chloroplasts can be stimulated by bicarbonate and various carbonyl or carboxyl compounds. Monovalent or divalent cations, which have hitherto been implicated in the energy distribution between the two photosystems, i.e., spillover phenomena at low light intensities, show a similar effect under high light conditions employed in this study. A mechanism for this stimulation of forward electron transport from Photosystem II to Photosystem I could involve inhibition of two types of Photosystem II partial reactions, which may involve cycling of electrons around Photosystem II. One of these is the DCMU-insensitive silicomolybdate reduction, and the other is ferricyanide reduction by Photosystem II at pH 8 in the presence of dibromothymoquinone. Greater stimulation of forward electron transport reactions is observed when both types of Photosystem II cyclic reactions are inhibited by bicarbonate, carbonyl and carboxyl-type compounds, or by certain mono- or divalent cations.Abbreviations used: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea; DCIP, 2,6-dichloroindophenol; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; FeCN, potassium ferricyanide; MV, methylviologen; PS I, photosystem I; PS II, photosystem II; SM, silicomolybdic acid.  相似文献   

5.
Time courses of chlorophyll fluorescence at room temperature and fluorescence spectra at 77 K were measured to investigate the light-induced changes in the distribution of light energy between the two photosy stems in young spinach leaves. Illumination of the dark adapted leaves with primarily system II light induced typical fluorescence transients at room temperature. Fluorescence spectra at 77 K showed that the intensity of system II fluorescence at 77 K changed nearly in parallel with the fluorescence transients at room temperature within the range from M1 to T during illumination of the leaf. Illumination of the dark adapted leaves with light I produced an increase of system II fluorescence measured at 77 K. The characteristics of the changes induced by light I or II were different, showing that these two effects are related to different mechanisms. These results suggest that the dark state in spinach leaves is state II, that light I induces a state II to I transition, while light II induces fluorescence changes that are produced by mechanisms other than state I-state II transitions.  相似文献   

6.
Flash-induced redox reactions in spinach PS II core particles were investigated with absorbance difference spectroscopy in the UV-region and EPR spectroscopy. In the absence of artificial electron acceptors, electron transport was limited to a single turnover. Addition of the electron acceptors DCBQ and ferricyanide restored the characteristic period-four oscillation in the UV absorbance associated with the S-state cycle, but not the period-two oscillation indicative of the alternating appearance and disappearance of a semiquinone at the QB-site. In contrast to PS II membranes, all active centers were in state S1 after dark adaptation. The absorbance increase associated with the S-state transitions on the first two flashes, attributed to the Z+S1ZS2 and Z+S2ZS3 transitions, respectively, had half-times of 95 and 380 s, similar to those reported for PS II membrane fragments. The decrease due to the Z+S3ZS0 transition on the third flash had a half-time of 4.5 ms, as in salt-washed PS II membrane fragments. On the fourth flash a small, unresolved, increase of less than 3 s was observed, which might be due to the Z+S0ZS1 transition. The deactivation of the higher S-states was unusually fast and occurred within a few seconds and so was the oxidation of S0 to S1 in the dark, which had a half-time of 2–3 min. The same lifetime was found for tyrosine D+, which appeared to be formed within milliseconds after the first flash in about 10% inactive centers and after the third and later flashes by active centers in Z+S3.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - D secondary electron donor of PS II - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0–3 redox state of the oxygen-evolving complex - Z secondary electron donor of PS II  相似文献   

7.
Fractions enriched in either Photosystem I or Photosystem II have been prepared from chloroplasts with digitonin. A more detailed analysis of the decay kinetics of fluorescence excited by a picosecond laser pulse has been possible compared to experiments with unfractionated systems. The Photosystem I fractions show a very short component (? 100 ps) at room temperature which is apparently independent of pulse intensity over the range of photon densities used (5 · 1013–1 · 1016 photons cm?2). The Photosystem II fraction has a short initial lifetime at room temperature which is strongly intensity-dependent approaching 500 ps at low photon densities, but decreasing to close to 150 ps at the highest photon densities. All of these room temperature decays appear to be non-exponential, and may possibly be fitted by at t12 expression, expected from a random diffusion of excitations via Förster energy transfer. On cooling to 77 K, lifetimes of both Photosystem I and Photosystem II increase, the lengthening with Photosystem I being more striking. The Photosystem I decays become intensity dependent like the Photosystem II, and at the lowest photon densities decays which are more nearly exponential within the experimental error give initial lifetimes of about 2 ns. The non-exponential decays seen at high photon densities appear to fit a t12 expression.  相似文献   

8.
The kinetics of thylakoid membrane protein phosphorylation in the presence of light and adenosine triphosphate is correlated to an incease in the 77 °K fluorescence emission at 735 nm (F735) relative to that at 685 nm (F685). Analysis of detergent-derived submembrane fractions indicate phosphorylation only of the polypeptides of Photosystem II, and the light-harvesting chlorophyll-protein complex serving Photosystem II (LHC-II). Although several polypeptides are phosphorylated, only the dephosphorylation kinetics of LHC-II follow the kinetics of the decrease of the F735F685 fluorescence emission ratios. The relative quantum yield of Photosystem II was significantly lower in phosphorylated membranes compared to dephosphorylated membranes. Reversible LHC-II phosphorylation thus provides the physiological mechanism for the control of the distribution of absorbed excitation energy between the two photosystems.  相似文献   

9.
10.
Abstract In a previous study we found that the 33 kDa extrinsic polypeptide of Photosystem II is present in both the cytoplasmic and thylakoid membranes of cyanobacteria, but forms part of a functional complex only in the latter [Smith et al. (1987) Mol. Microbiol. 6, 1821–1827]. In order to determine if this phenomenon is restricted to the 33 kDa polypeptide we have extended this study in Anacystis nidulans to include a number of other polypeptides of Photosystem I and Photosystem II. We have found that D1 and possibly PsaC are present in both membranes, CP43 and CP47 are confined to the thylakoid membranes, and the distribution of PsaD and PsaE is dependent upon the growth stage of the cyanobacteria.  相似文献   

11.
W.L. Butler  M. Kitajima 《BBA》1975,396(1):72-85
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at ?196 °C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5 mM MgCl2 which presumably changes the distribution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, α, being the fraction distributed to Photosystem I, and β, the fraction to Photosystem II, and a term for the rate constant for energy transfer from Photosystem II to Photosystem I,kT(II→I). The data, analyzed within the context of the model, permit a direct comparison of α andkT(II→I) in the absence (?) and presence (+) of Mg2+:α/?α+= 1.2andk/?T(II→I)k+T(II→I)= 1.9. If the criterion thatα + β = 1 is applied absolute values can be calculated: in the presence of Mg2+,a+ = 0.27 and the yield of energy transfer,φ+T(II→I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg2+? = 0.32 andφT(II→I) varied from 0.12 to 0.28.The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvseting chlorophyll of Photosystem II to Photosystem I,kT(II→I), and a transfer from the reaction centers of Photosystem II to Photosystem I,kt(II→I). In that caseα/?α+= 1.3,k/?T(II→I)k+T(II→I)= 1.3 andk/?t(II→I)k+(tII→I)= 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

12.
The variation of the rate of cyclic electron transport around Photosystem I (PS I) during photosynthetic induction was investigated by illuminating dark-adapted spinach leaf discs with red + far-red actinic light for a varied duration, followed by abruptly turning off the light. The post-illumination re-reduction kinetics of P700+, the oxidized form of the photoactive chlorophyll of the reaction centre of PS I (normalized to the total P700 content), was well described by the sum of three negative exponential terms. The analysis gave a light-induced total electron flux from which the linear electron flux through PS II and PS I could be subtracted, yielding a cyclic electron flux. Our results show that the cyclic electron flux was small in the very early phase of photosynthetic induction, rose to a maximum at about 30 s of illumination, and declined subsequently to <10% of the total electron flux in the steady state. Further, this cyclic electron flow, largely responsible for the fast and intermediate exponential decays, was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, suggesting an important role of redox poising of the cyclic components for optimal function. Significantly, our results demonstrate that analysis of the post-illumination re-reduction kinetics of P700+ allows the quantification of the cyclic electron flux in intact leaves by a relatively straightforward method.  相似文献   

13.
《BBA》1985,808(3):470-473
Photoacoustic spectroscopy has been used to monitor the energy conversion in Photosystem II submembrane fractions isolated from spinach. The extent of detected photochemistry was studied as a function of the modulated light intensity. Half of the reaction centers were saturated at an intensity of 0.5 W·m−2. However, the energy storage yield extrapolated to a modulated light intensity of zero was comparable to the yields reported for chloroplasts or algae. It is suggested that the molecular component responsible for the energy storage detected by photoacoustics at a modulation frequency of 35 Hz is located at the level of electron transport.  相似文献   

14.
The light-induced induction of components of non-photochemical quenching of chlorophyll fluorescence which are distinguished by different rates of dark relaxation (qNf, rapidly relaxing and qNs, slowly relaxing or not relaxing at all in the presence brief saturating light pulses which interrupt darkness at low frequencies) was studied in leaves of spinach.After dark adaptation of the leaves, a fast relaxing component developed in low light only after a lag phase. Quenching increased towards a maximum with increasing photon flux density. This fast component of quenching was identified as energy-dependent quenching qE. It required formation of an appreciable transthylakoid pH and was insignificant when darkened spinach leaves received 1 s pulses of light every 30 s even though zeaxanthin was formed from violaxanthin under these conditions.Another quenching component termed qNs developed in low light without a lag phase. It was not dependent on a transthylakoid pH gradient, decayed exponentially with a long half time of relaxation and was about 20% of total quenching irrespective of light intensity. When darkened leaves were flashed at frequencies higher than 0.004 Hz with 1 s light pulses, this quenching also appeared. Its extent was very considerable, and it did not require formation of zeaxanthin. Relaxation was accelerated by far-red light, and this acceleration was abolished by NaF.We suggest that qNs is the result of a so-called state transition, in which LHC II moves after its phosphorylation from fluorescent PS II to nonfluorescent PS I. This state transition was capable of decreasing in darkened leaves the potential maximum quantum efficiency of electron flow through Photosystem II by about 20%.Abbreviations PFD photon flux density - PS photosystem  相似文献   

15.
R.J. Strasser  W.L. Butler 《BBA》1977,460(2):230-238
Equations are derived from our model of the photochemical apparatus of photosynthesis to show that the yield of energy transfer from Photosystem II to Photosystem I, ?T(II→Iz), can be obtained from measurements on an individual sample of chloroplasts frozen to ?196 °C by comparing the sum of two specifically defined fluorescence excitation spectra with the absorption spectrum of the sample. Then, given that value of ?T(II→I), the fraction of the quanta absorbed by the photochemical apparatus which is distributed initially to Photosystem I, α, can be determined as a function of the wavelength of excitation from the same fluorescence excitation spectra. The results obtained in this study of individual samples of chloroplasts frozen to ?196 °C in the absence of divalent cations, namely, that ?T(II→I) varies from a minimum value of 0.10 when the Photosystem II reaction centers are all open to a maximum value of 0.25 when the centers are all closed and that α has a value of about 0.30 which is almost independent of wavelength for wavelengths shorter than 675 nm (α increases rapidly toward unity at wavelengths longer than 675 nm), agrees quite well with results obtained previously from comparative measurements of chloroplasts frozen to ?196 °C in the presence and absence of divalent cations.  相似文献   

16.
17.
Photoinactivation of Photosystem II (PS II), the light-induced loss of ability to evolve oxygen, inevitably occurs under any light environment in nature, counteracted by repair. Under certain conditions, the extent of photoinactivation of PS II depends on the photon exposure (light dosage, x), rather than the irradiance or duration of illumination per se, thus obeying the law of reciprocity of irradiance and duration of illumination, namely, that equal photon exposure produces an equal effect. If the probability of photoinactivation (p) of PS II is directly proportional to an increment in photon exposure (p = kΔx, where k is the probability per unit photon exposure), it can be deduced that the number of active PS II complexes decreases exponentially as a function of photon exposure: N = Noexp(−kx). Further, since a photon exposure is usually achieved by varying the illumination time (t) at constant irradiance (I), N = Noexp(−kI t), i.e., N decreases exponentially with time, with a rate coefficient of photoinactivation kI, where the product kI is obviously directly proportional to I. Given that N = Noexp(−kx), the quantum yield of photoinactivation of PS II can be defined as −dN/dx = kN, which varies with the number of active PS II complexes remaining. Typically, the quantum yield of photoinactivation of PS II is ca. 0.1μmol PS II per mol photons at low photon exposure when repair is inhibited. That is, when about 107 photons have been received by leaf tissue, one PS II complex is inactivated. Some species such as grapevine have a much lower quantum yield of photoinactivation of PS II, even at a chilling temperature. Examination of the longer-term time course of photoinactivation of PS II in capsicum leaves reveals that the decrease in N deviates from a single-exponential decay when the majority of the PS II complexes are inactivated in the absence of repair. This can be attributed to the formation of strong quenchers in severely-photoinactivated PS II complexes, able to dissipate excitation energy efficiently and to protect the remaining active neighbours against damage by light.  相似文献   

18.
B. Bouges-Bocquet 《BBA》1975,396(3):382-391
We have studied the recovery of the photochemical activity of Photosystem I after the charge separation induced by a flash under conditions where the secondary donors are in the reduced form.

The rate-limiting steps are on the donor side. The first step is completed within 400 μs. The second step is much slower (half time 1 ms) and corresponds to the transfer of electrons from plastoquinone. Under our conditions, only one intermediate is involved in electron transfer between the centers and the plastoquinone pool.

Electron exchange between the System I centers has been demonstrated.  相似文献   


19.
G. Renger  B. Hanssum  H. Gleiter  H. Koike  Y. Inoue 《BBA》1988,936(3):435-446
The interaction of exogenous quinones with the Photosystem II (PS II) acceptor side has been analyzed by measurements of flash-induced 320 nm absorption changes, transient flash-induced variable fluorescence changes, thermoluminescence emission and oxygen yield in dark-adapted thylakoids and PS II membrane fragments. Two classes of 1,4-benzoquinones were shown to give rise to remarkably different reaction patterns. (A) Phenyl-p-benzoquinone (Ph-p-BQ) -type compounds give rise to a marked binary oscillation of the initial amplitudes of 320 nm absorption changes induced by a flash train in dark-adapted PS II membrane fragments and a retardation of the decay kinetics of the flash-induced variable fluorescence. The electron transfer reactions to these type of quinones are severely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). (B) In the presence of tribromotoluquinone (TBTQ) a different oscillation pattern of the 320 nm absorption changes is observed characterized by a marked relaxation after the first flash in the 5 ms domain. This relaxation is insensitive to 10 μM DCMU. Likewise the decay of the flash-induced variable fluorescence in TBTQ-treated samples is much less sensitive to DCMU than in control. The thermoluminescence emission exhibits an oscillation in samples incubated for 5 min with TBTQ before addition of 30 μM DCMU. Under the same conditions a significant flash-induced oxygen evolution is observed only after the third and fourth flash, respectively, whereas in the presence of TBTQ alone a normal oscillation pattern is observed. The different functional patterns of PS II caused by the two types of classes of exogenous quinones are interpreted by their binding properties: a noncovalent association with the QB-site of Ph-p-BQ-type quinones versus a tight (covalent?) binding in the vicinity of QA (possibly also at the QB-site) in the case of halogenated 1,4-benzoquinones. The mechanistic implications of these findings are discussed.  相似文献   

20.
M. Kitajima  W.L. Butler 《BBA》1975,408(3):297-305
The parameters listed in the title were determined within the context of a model for the photochemical apparatus of photosynthesis.

The fluorescence of variable yield at 750 nm at −196 °C is due to energy transfer from Photosystem II to Photosystem I. Fluorescence excitation spectra were measured at −196 °C at the minimum, FO, level and the maximum, FM, level of the emission at 750 nm. The difference spectrum, FMFO, which represents the excitation spectrum for FV is presented as a pure Photosystem II excitation spectrum. This spectrum shows a maximum at 677 nm, attributable to the antenna chlorophyll a of Photosystem II units, with a shoulder at 670 nm and a smaller maximum at 650 nm, presumably due to chlorophyll a and chlorophyll b of the light-harvesting chlorophyll complex.

Fluorescence at the FO level at 750 nm can be considered in two parts; one part due to the fraction of absorbed quanta, , which excites Photosystem I more-or-less directly and another part due to energy transfer from Photosystem II to Photosystem I. The latter contribution can be estimated from the ratio of FO/FV measured at 692 nm and the extent of FV at 750 nm. According to this procedure the excitation spectrum of Photosystem I at −196 °C was determined by subtracting 1/3 of the excitation spectrum of FV at 750 nm from the excitation spectrum of FO at 750 nm. The spectrum shows a relatively sharp maximum at 681 nm due to the antenna chlorophyll a of Photosystem I units with probably some energy transfer from the light-harvesting chlorophyll complex.

The wavelength dependence of was determined from fluorescence measurements at 692 and 750 nm at −196 °C. is constant to within a few percent from 400 to 680 nm, the maximum deviation being at 515 nm where shows a broad maximum increasing from 0.30 to 0.34. At wavelengths between 680 and 700 nm, increases to unity as Photosystem I becomes the dominant absorber in the photochemical apparatus.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号