首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rubidium uptake in potassium-starved cells followed biphasic kinetics in the micromolar and millimolar range and was independent of the temperature. In contrast, Rb+ uptake in normal-K+ cells followed a monophasic kinetics in the millimolar range and increased at temperatures higher than 30°C. Differences in the K m values and in the Arrhenius plots of Rb+ uptake suggest different uptake systems in K+-starved and in normal-K+ cells. In addition, the substantial inhibition of Rb+ uptake caused by carbonyl cyanide-m-chlorophenyl hydrazone indicates that these systems are strongly dependent on membrane voltage. Lithium (sodium) tolerance, influx, and efflux were separately studied. F. oxysporum was shown to be very tolerant to sodium, while lithium caused a specific toxic effect. Li+ uptake in K+-starved cells exhibits a monophasic kinetics with low affinity. Li+ efflux was not affected by external pH or addition of potassium to the medium, suggesting that a Na+/cation antiporter is not involved in this process. Received: 14 March 2000 / Accepted: 5 June 2000  相似文献   

2.
A mutant in Saccharomyces cerevisiae required one hundred times more K+ than wild type for the same half maximal growth rate. Mutant cells and wild type cells grown at millimolar K+ did not show significant differences in Rb+ transport. In the mutant, a rapid K+ loss induced by azide or incubation (4 h) in K+-free medium decreased the Rb+ transport K m by one half; in the wild type, those treatments decreased the Rb+ K m twenty and one hundred times, respectively. Mutant and wild type did not show significant differences in Na+ transport and in the Na+ inhibition of Rb+ transport, either in normal-K+ cells or in K+-starved cells. The results suggest that either two systems or one system with two interacting sites mediate K+ transport in S. cerevisiae.Abbreviations YPD yeast-peptone-dextrose medium  相似文献   

3.
NaCl Induces a Na/H Antiport in Tonoplast Vesicles from Barley Roots   总被引:22,自引:10,他引:12       下载免费PDF全文
Evidence was found for a Na+/H+ antiport in tonoplast vesicles isolated from barley (Hordeum vulgare L. cv California Mariout 72) roots. The activity of the antiport was observed only in membranes from roots that were grown in NaCl. Measurements of acridine orange fluorescence were used to estimate relative proton influx and efflux from the vesicles. Addition of MgATP to vesicles from a tonoplast-enriched fraction caused the formation of a pH gradient, interior acid, across the vesicle membranes. EDTA was added to inhibit the ATPase, by chelating Mg2+, and the pH gradient gradually dissipated. When 50 millimolar K+ or Na+ was added along with the EDTA to vesicles from control roots, the salts caused a slight increase in the rate of dissipation of the pH gradient, as did the addition of 50 millimolar K+ to vesicles from salt-grown roots. However, when 50 millimolar Na+ was added to vesicles from salt-grown roots it caused a 7-fold increase in the proton efflux. Inclusion of 20 millimolar K+ and 1 micromolar valinomycin in the assay buffer did not affect this rapid Na+/H+ exchange. The Na+/H+ exchange rate for vesicles from salt-grown roots showed saturation kinetics with respect to Na+ concentration, with an apparent Km for Na+ of 9 millimolar. The rate of Na+/H+ exchange with 10 millimolar Na+ was inhibited 97% by 0.1 millimolar dodecyltriethylammonium.  相似文献   

4.
A H+-translocating inorganic pyrophosphatase (H+-PPase) was associated with low density membranes enriched in tonoplast vesicles of oat roots. The H+-PPase catalyzed the electrogenic transport of H+ into the vesicles, generating a pH gradient, inside acid (quinacrine fluorescence quenching), and a membrane potential, inside positive (Oxonol V fluorescence quenching). Transport activity was dependent on cations with a selectivity sequence of Rb+ = K+ > Cs+; but it was inhibited by Na+ or Li+. Maximum rates of transport required at least 20 millimolar K+ and the Km for this ion was 4 millimolar. Fluoride inhibited both ΔpH formation and K+-dependent PPase activity with an I50 of 1 to 2 millimolar. Inhibitors of the anion-sensitive, tonoplast-type H+-ATPase (e.g. a disulfonic stilbene or NO3) had no effect on the PPase activity. Vanadate and azide were also ineffective. H+-pumping PPase was inhibited by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and N-ethylmaleimide, but its sensitivity to N,N′-dicyclohexylcarbodiimide was variable. The sensitivity to ions and inhibitors suggests that the tonoplast H+-PPase and the H+-ATPase are distinct activities and this was confirmed when they were physically separated after Triton X-100 solubilization and Sepharose CL-6B chromatography. H+ pumping activity was strongly affected by Mg2+ and pyrophosphate (PPi) concentrations. At 5 millimolar Mg2+, H+ pumping showed a KmaPP for PPi of 15 micromolar. The rate of H+ pumping at 60 micromolar PPi was often equivalent to that at 1.5 millimolar ATP. The results suggest PPi hydrolysis could provide another source of a proton motive force used for solute transport and other energy-requiring processes across the tonoplast and other membranes with H+-PPase.  相似文献   

5.
Experiments are reported in which the uptake of 86Rb+, used as an analog of K+, into cultured cells of Arabidopsis thaliana is investigated. A single transport system is found with Km = 0.34 millimolar and Vmax = 14 nmoles per milligram of protein per hour. This system is blocked by the metabolic inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and by cold. At high concentrations of external K+ (above 1 millimolar), a significant fraction of total uptake is energy-independent. No evidence is found for more than one energy-dependent uptake system or for concentration-dependent modifications of a carrier as postulated in multiphasic transport models.  相似文献   

6.
The Na+ requirement for photosynthesis and its relationship to dissolved inorganic carbon (DIC) concentration and Li+ concentration was examined in air-grown cells of the cyanobacterium Synechococcus leopoliensis UTEX 625 at pH 8. Analysis of the rate of photosynthesis (O2 evolution) as a function of Na+ concentration, at fixed DIC concentration, revealed two distinct regions to the response curve, for which half-saturation values for Na+ (K½[Na+]) were calculated. The value of both the low and the high K½(Na+) was dependent upon extracellular DIC concentration. The low K½(Na+) decreased from 1000 micromolar at 5 micromolar DIC to 200 micromolar at 140 micromolar DIC whereas over the same DIC concentration range the high K½(Na+) decreased from 10 millimolar to 1 millimolar. The most significant increases in photosynthesis occurred in the 1 to 20 millimolar range. A fraction of total photosynthesis, however, was independent of added Na+ and this fraction increased with increased DIC concentration. A number of factors were identified as contributing to the complexity of interaction between Na+ and DIC concentration in the photosynthesis of Synechococcus. First, as revealed by transport studies and mass spectrometry, both CO2 and HCO3 transport contributed to the intracellular supply of DIC and hence to photosynthesis. Second, both the CO2 and HCO3 transport systems required Na+, directly or indirectly, for full activity. However, micromolar levels of Na+ were required for CO2 transport while millimolar levels were required for HCO3 transport. These levels corresponded to those found for the low and high K½(Na+) for photosynthesis. Third, the contribution of each transport system to intracellular DIC was dependent on extracellular DIC concentration, where the contribution from CO2 transport increased with increased DIC concentration relative to HCO3 transport. This change was reflected in a decrease in the Na+ concentration required for maximum photosynthesis, in accord with the lower Na+-requirement for CO2 transport. Lithium competitively inhibited Na+-stimulated photosynthesis by blocking the cells' ability to form an intracellular DIC pool through Na+-dependent HCO3 transport. Lithium had little effect on CO2 transport and only a small effect on the size of the pool it generated. Thus, CO2 transport did not require a functional HCO3 transport system for full activity. Based on these observations and the differential requirement for Na+ in the CO2 and HCO3 transport system, it was proposed that CO2 and HCO3 were transported across the membrane by different transport systems.  相似文献   

7.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

8.
The kinetics of active K+ transport were studied in immature red blood cells cells from high-K+ and low-K+ sheep, particularly with respect to the effects of varying intracellular K+ concentration, [K]i. Comparison was made with active transport, or pump, activity in mature high-K+ and low-K+ red cells. Reticulocytes from both types of sheep had much higher maximal active K+ influxes than did mature cells. In both types of reticulocytes, and in mature high-K+ cells as well, the pump was relatively insensitive to increasing [K]i. In contrast, intracellular K+ markedly inhibited the pump in mature low-K+ cells. Active K+ transport in low-K+ reticulocytes, however, as in mature low-K+ cells, is stimulated by specific isoimmune anti-L serum. Therefore the K+ pumps of high-K+ and low-K+ reticulocytes have similar kinetic properties. Maturation of the red cells, involving inactivation of most of the pump activity in both cell types, results in mature high-K+ and low-K+ cells with K+ pumps of very different kinetic characteristics.  相似文献   

9.
K+-stimulated ATPase activity of a plasmalemma-enriched fraction from excised roots of oat was triphasic in the range 5 to 80 millimolar KCl. The phases obeyed Michaelis-Menten kinetics and were separated from each other by jumps or sharp breaks at about 10 and 20 millimolar. Stimulation by alkali cations was in the order K+ > Rb+ > Na+ > Cs+ > Li+ or in a closely related sequence. The specificity reflected differences in Vmax, not in affinity (Km−1). Stimulation by the organic cations ethanolamine and choline in the interval 11 to 80 millimolar appeared monophasic rather than biphasic. Substitution on the quaternary nitrogen of the amino alcohols decreased their effectiveness, as did extension and branching of the chain. Stimulation was maximal at about pH 7 both for K+ and choline.  相似文献   

10.
SliK, a K+ channel encoded by the Streptomyces KcsA gene, was expressed, purified, and reconstituted in liposomes. A concentrative 86Rb+ flux assay was used to assess the ion transport properties of SliK. SliK-mediated ionic flux shows strong selectivity for K+ over Na+ and is inhibited by micromolar concentrations of Ba2+, mirroring the basic permeation characteristic of eukaryotic K+ channels studied by electrophysiological methods. 86Rb+ uptake kinetics and equilibrium measurements also demonstrate that the purified protein is fully active.  相似文献   

11.
Kochian LV  Lucas WJ 《Plant physiology》1982,70(6):1723-1731
Influx isotherms were obtained for 86Rb+ uptake into 2-cm corn (Zea mays [A632 × (C3640 × Oh43)] root segments for both low- (0.2 millimolar CaSO4) and high-salt (0.2 millimolar CaSO4 + 5 millimolar KCl) grown roots. Unlike the discontinuous curves usually presented for K+ influx, our isotherms were smooth, nonsaturating curves that approached linearity at K+ (Rb+) concentrations above 1 millimolar. The kinetics for K+ transport could be resolved into saturable and linear components. The saturable components yielded Km values of 16 and 86 micromolar for low- and high-salt roots, respectively, while Vmax values were 5.62 and 1.85 moles per gram fresh weight per hour. Results of experiments with the penetrating sulfhydryl reagent, N-ethyl maleimide (NEM), and the impermeant reagent, p-chloromercuribenzene sulfonic acid (PCMBS) indicated that the saturable and linear components were independent mechanisms of K+ transport.

Short-term NEM exposures (30 seconds to 5 minutes) selectively inhibited the saturable system, but had little effect on the linear component. Increasing NEM exposures resulted in further inhibition and subsequent abolition of the saturable component; the linear component exhibited limited NEM sensitivity. PCMBS elicited the same general inhibitory trends, although it was less effective as a saturable component inhibitor.

The effects of NEM and PCMBS on K+ efflux were also studied. Short NEM exposures had no effect on cytoplasmic efflux, while inhibiting vacuolar efflux significantly. From these data, it is unclear at which site(s) NEM is acting. A more complex response was obtained with PCMBS, where a monophasic efflux curve was observed. Analysis indicated that the vacuolar efflux was stimulated, while the cytoplasmic component was abolished.

The nature of the linear component is discussed, and it is proposed that the mechanism may be more complex than simple facilitated diffusion.

  相似文献   

12.
High-affinity K+ uptake in plants plays a crucial role in K+ nutrition and different systems have been postulated to contribute to the high-affinity K+ uptake. The results presented here with pepper (Capsicum annum) demonstrate that a HAK1-type transporter greatly contributes to the high-affinity K+ uptake observed in roots. Pepper plants starved of K+ for 3 d showed high-affinity K+ uptake (K m of 6 M K+) that was very sensitive to NH and their roots expressed a high-affinity K+ transporter, CaHAK1, which clusters in group I of the KT/HAK/KUP family of transporters. When expressed in yeast (Saccharomyces cerevisiae), CaHAK1 mediated high-affinity K+ and Rb+ uptake with K m values of 3.3 and 1.9 M, respectively. Rb+ uptake was competitively inhibited by micromolar concentrations of NH and Cs+, and by millimolar concentrations of Na+.  相似文献   

13.
Lefebvre DD 《Plant physiology》1989,91(4):1460-1466
Cell lines of suspension cultures of Brassica napus cv. Jet Neuf were identified for their ability to tolerate 100 millimolar Rb+, a level which was double the normally lethal concentration. Ten spontaneous isolates were obtained from approximately 5 × 107 cells, one of which was reestablished as a cell suspension. This cell line, JL5, was also resistant to the other group IA cations— Li+, Na+, K+, and Cs+—and this trait was stable for at least 30 cell generations in the absence of Rb+ selection pressure. The growth characteristics were similar to those of sensitive cells under nonselective conditions. The selected JL5 cells were shown by analysis to have effected more net accumulation of K+ and Rb+ and less of Na+ than did the unselected cells. JL5 and unselected cells after 14 days of culture in basal medium contained 597.2 and 258.2 micromoles of K per gram dry weight, respectively. Michaelis-Menten kinetic analysis of K+ influx showed that JL5 possessed an elevated phase 1 Vmax, but there was no alteration in its Km. This is the first time that a plant mutation has been shown to have both increased influx and net absorption of a major essential cation.  相似文献   

14.
Na+-ATPase of high-K+ and low-K+ sheep red cells was examined with respect to the sidedness of Na+ and K+ effects, using inside-out membrane vesicles and very low ATP concentrations (?2 μM). With varying amounts of Na+ in the medium, i.e., at the cytoplasmic surface, Nacyt+, the activation curves show that high-K+ Na+-ATPase has a higher affinity for Nacyt+ compared to low-K+. The apparent affinity for Nacyt+ is also increased by increasing the ATP concentrations in high-K+ but not low-K+. With Nacyt+ present, Na+-ATPase is stimulated by intravesicular Na+, i.e., Na+ at the originally external surface, Naext+, to a greater extent in low-K+ than high-K+. Intravesicular K+ (Kext+) activates Na+-ATPase in high-K+ but not in low-K+ vesicles and extravesicular K+ (Kcyt+) inhibits low-K+ but not high-K+ Na+-ATPase. Thus, the genetic difference between high-K+ and low-K+ is expressed as differences in apparent affinities for both Na+ and K+ and these differences are evident at both cytoplasmic and external membrane surfaces.  相似文献   

15.
K+ and Na+ fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K+ with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions.

Increasing ambient Na+ concentrations from 0 to 50 millimolar altered K+, in Atriplex, as follows: slightly decreased the cytoplasmic content (Qc), the vacuolar content (Qv), and the plasma membrane influx and efflux. Xylem transport for K+ decreased by 63% in Atriplex. For oat roots, similar increases in Na+ altered K+ parameters as follows: plasma membrane influx and efflux decreased by about 80%. Qc decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Qv for K+. Increasing ambient Na+ resulted in higher (3 to 5-fold) Na+ fluxes across the plasma membrane and in Qc of both species. In Atriplex, Na+ fluxes across the tonoplast and Qv increased as external Na+ was increased. In oat, however, no significant change was observed in Na+ flux across the tonoplast or in Qv as external Na+ was increased. In oat roots, Na+ reduced K+ uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na+ levels, the influx transport system at the plasma membrane of both species preferred K+ over Na+.

Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K+ occurred across the plasma membrane, and passive movement of K+ occurred across the tonoplast in both species. Na+, in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na+ was passively distributed between the free space, cytoplasm, and vacuole.

  相似文献   

16.
Summary The effect of the loop diuretic furosemide (4-chloro-N-furfuryl-5-sulfamoyl-anthranilic acid) on the thiol-dependent, ouabain-insensitive K(Rb)/Cl transport in low K+ sheep red cells was studied at various concentrations of extracellular Rb+, Na+ and Cl. In Rb+-free NaCl media, 2×10–3 m furosemide inhibited only one-half of thiol-dependent K+ efflux. In the presence of 23mm RbCl, however, the concentration of furosemide to produce 50% K+ efflux inhibition (IC50) was 5×10–5 m. In Rb+ containing NaCl media, the inhibitory effect of 10–3 m furosemide was equal to that caused by NO 3 replacement of Cl in the medium. The apparent synergistic action of furosemide and external Rb+ on K+ efflux was also seen in the ouabain-insensitive Rb+ influx. A preliminary kinetic analysis suggests that furosemide binding alters both maximal K+(Rb+) transport and apparent external Rb+ affinity. In the presence of external Rb+, Na+ (as compared to choline) exerted a small but significant augmentation of the furosemide inhibition of K+(Rb+) fluxes. There was no effect of Cl on the IC50 value of furosemide. As there is no evidence for coupled Na+K+ cotransport in low K+ sheep red cells, furosemide may modify thiol-dependent K+(Rb+/Cl flux or Rb+ (and to a slight degree Na+) modulate the effect of furosemide.  相似文献   

17.
A method to determine intracellular cation contents in Dunaliella by separation on cation-exchange minicolumns is described. The separation efficiency of cells from extracellular cations is over 99.9%; the procedure causes no apparent perturbation to the cells and can be applied to measure both fluxes and internal content of any desired cation. Using this technique it is demonstrated that the intracellular averaged Na+, K+, and Ca2+ concentrations in Dunaliella salina cultured at 1 to 4 molar NaCl, 5 millimolar K+, and 0.3 millimolar Ca2+ are 20 to 100 millimolar, 150 to 250 millimolar, and 1 to 3 millimolar, respectively. The intracellular K+ concentration is maintained constant over a wide range of media K+ concentrations (0.5-10 millimolar), leading to a ratio of K+ in the cells to K+ in the medium of 10 to 1,000. Severe limitation of external K+, induces loss of K+ and increase in Na+ inside the cells. The results suggest that Dunaliella cells possess efficient mechanisms to eliminate Na+ and accumulate K+ and that intracellular Na+ and K+ concentrations are carefully regulated. The contribution of the intracellular Na+ and K+ salts to the total osmotic pressure of cells grown at 1 to 4 molar NaCl, is 5 to 20%.  相似文献   

18.
The roles of Na+ and K+ (Rb+) uptake were further studied in a NaCl-tolerant strain of Ceratopteris richardii containing the stl2 mutation by direct comparison with the wild-type strain. In addition to Na+ tolerance, stl2 also confers tolerance to Mg2+ and sensitivity to K+. In addition to higher K+ (Rb+) uptake at concentrations commonly associated with low-affinity K+ transport, stl2 maintained higher uptake down to 0·1 mol m–3 Rb+. Up to a 25-fold excess of Na+ had little effect in either genotype on K+ (Rb+) uptake at low concentrations, i.e. 0·2 and 0·5 mol m–3 RbCl. Pretreatment with K+ (20 mol m–3) inhibited uptake of K+ (Rb+) in the wild type, whereas concurrent inclusion of K+ inhibited uptake of Rb+ more in stl2. In the absence of K+, Na+ uptake (0·01–60 mol m–3) was nearly identical in the wild type and stl2. K+ inhibited Na+ uptake more effectively in stl2 than the wild type, especially at 60 mol m–3 Na+. Greater inhibition of K+ uptake in stl2 occurred with MgCl2 or TEA (tetraethylammonium chloride) preincubation or with simultaneous inclusion of Al3+ (Al2SO4). The higher effective velocity of K+ uptake at a wide range of concentrations and the enhanced selectivity for K+ and against Na+ contribute to the preservation of higher cytosolic K+ and lower Na+ under salinity stress.  相似文献   

19.
Barley (Hordeum vulgare L. cv Halcyon) seedlings which had been grown in full strength complete inorganic nutrient media (containing 6 millimolar K+) had high internal K+ concentrations and low values of K+ (86Rb+) influx when influx was measured from solutions containing 100 micromolar K+. Transfer of these plants to solutions lacking K+ resulted in significant reductions of root and shoot K+ concentrations and values of K+ (86Rb+) influx increased by greater than 10-fold within 3 days. When plants treated in this way were returned to complete solutions, containing K+, the changes induced by K+ deprivation were reversed. Parallel studies of microsomal membranes by means of SDS-PAGE demonstrated that the expression of a group of polypeptides increased or decreased in parallel with changes of K+ (86Rb+) influx. Most prominent of these were 45 and 34 kilodalton polypeptides which specifically responded to K+ status of the barley plants; their expression was not enhanced by N or P deprivation. The 45 kilodalton polypeptide was susceptible to degradation by a membrane associated protease when microsomes were washed in buffer containing 0.2 millimolar PMSF. This loss was prevented by increasing PMSF concentration to 2 millimolar.  相似文献   

20.
The properties of the α1 Na+-K+ pump were compared in Dahl salt-sensitive (DS) and salt-resistant (DR) strains by measuring ouabain-sensitive luxes (mmol/liter cell x hr = FU, Mean ± se) in red blood cells (RBCs) and varying internal ( i ) and external ( o ) Na+ and K+ concentrations. Kinetic parameters of several modes of operation, i.e., Na+/ K+, K+/K+, Na+/Na+ exchanges, were characterized and analyzed for curve-fitting using the Enzfitter computer program. In unidirectional flux studies (n=12 rats of each strain) into fresh cells incubated in 140 mm Na+ + 5 mm K+, ouabain-sensitive K+ influx was substantially lower in the DS than in DR RBCs, while ouabain-sensitive Na+ efflux and Na i were similar in both strains. Thus, the coupling ratio between unidirectional Na+∶K+ fluxes was significantly higher in DS than in DR cells at similar RBC Na+ content. In the presence of 140 mm Na o , activation of ouabain-sensitive K+ influx by K o had a lower K m and V max in DS as estimated by the Garay equation (N=2.70 ± 0.33, K m 0.74 ± 0.09 mm; V max 2.87 ± 0.09 FU) than in DR rats (N=1.23 ± 0.36, K m 2.31 ± 0.16 mm; v max 5.70 ± 0.52 FU). However, the two kinetic parameters were similar following Na o removal. The activation of ouabain-sensitive K+ influx by Na i had significantly lower V max in DS (9.3 ± 0.4 FU) than in DR (14.5 ± 0.6 FU) RBCs but similar K m. These data suggest that the low K+ influx in DS cells is caused by a defect in modulation by Na o and Na i . Na+ efflux showed no differences in Na i activation or trans effects by Na o and K o , thus accounting for the different Na+∶K+ coupling ratio in the Dahl strains. Further evidence for the differences in the coupling of ouabain-sensitive fluxes was found in studies of net Na+ and K+ fluxes, where the net ouabain-sensitive Na+ losses showed similar magnitudes in the two Dahl strains while the net ouabainsensitive K+ gains were significantly greater in the DR than the DS RBCs. Ouabain-sensitive Na+ influx and K+ efflux were also measured in these rat RBCs. The inhibition of ouabain-sensitive Na+ influx by K o was fully competitive for the DS but not for the DR pumps. Thus, for DR pumps, K o could activate higher K+ influx in DR pumps without a complete inhibition of ouabain-sensitive Na+ influx. This behavior is consistent with K o interaction with distinct Na+ and K+ transport sites. In addition, the inhibition of K+ efflux by Na, was different between Dahl strains. Ouabain-sensitive K+ efflux at Na i level of 4.6 mmol/liter cell, was significantly higher in DS (3.86 ± 0.67 FU) than in DR (0.86 ± 0.14 FU) due to a threefold higher K50 for Na i -inhibition 9.66 ± 0.41 vs. 3.09 ± 0.11 mmol/liter cell. This finding indicates that Na+ modulation of K+ transport is altered at both sides of the membrane. The dissociation of Na+ modulatory sites of K+ transport from Na+ transport sites observed in RBCs of Dahl strains suggests that K+ transport by the Na+-K+ pump is controlled by Na+ allosteric sites different from the Na+ transport sites. The alterations in K+ transport may be related to the amino acid substitution (Leu/Gln276) reported for the cDNA of the α1 subunit of the Na+-K+ pump in the DS strain or to post-translational modifications during RBC maturation. These studies were supported by the following grants: NIH (HL-35664, HL-42120, HL-18318, HL-39267, HL-01967). J.R.R. is a Ford Foundation Predoctoral Fellow. A preliminary report of this work was presented at the International Conference on the Na+-K+ pump and 44th Annual Meeting of the Society of General Physiologists held at Woods Hole, MA, September 5–9, 1990, and published as an abstract in the J. Gen. Physiol. 96:70a, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号