首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithin/PRSS14, a type II transmembrane serine protease, plays critical roles in cancer metastasis. Previously, we have reported that epithin/PRSS14 undergoes ectodomain shedding in response to phorbol myristate acetate (PMA) stimulation. In this study, we show that transforming growth factor-β (TGF-β) induces rapid epithin/PRSS14 shedding through receptor mediated pathway in 427.1.86 thymoma cells. Tumor necrosis factor-α converting enzyme (TACE) is responsible for this shedding. Amino acid sequence encompassing the putative shedding cleavage site of epithin/PRSS14 exhibit strong homology to the cleavage site of l-selectin, a known TACE substrate. TACE inhibitor, TAPI-0 and TACE siRNA greatly reduced TGF-β-induced epithin/PRSS14 shedding. TGF-β treatment induces translocation of intracellular pool of TACE to the membrane where epithin/PRSS14 resides. These findings suggest that TGF-β induces epithin/PRSS14 shedding by mediating translocation of epithin/PRSS14 sheddase, TACE, to the membrane.  相似文献   

2.
Epithin, a mouse type II transmembrane serine protease, is processed at Gly149 and released from the membrane. Here, we report the identification of an epithin isoform, epithin(Delta), containing a 66 amino acid deletion from the full-length epithin, which is missing the 4th LDLRA domain and the protease activation sequence. This truncated isoform showed the same characteristic N-terminal processing at Gly149 as the full-length form, however, no protease activity was detected. The N-terminal processed epithin(Delta) short form (Epi(Delta)-S) was not released into the medium under conditions in which the processed epithin short form (Epi-S) is released. This type of epithin shedding was also prevented when serine protease inhibitors were added to cells expressing the full-length form. These results strongly suggest that the serine protease activity is involved in the shedding process. The presence of epithin(Delta) message was detected in multiple tissues and its significance is discussed.  相似文献   

3.
4.
Ectodomain shedding and intramembrane proteolysis of the amyloid precursor protein (APP) by alpha-, beta- and gamma-secretase are involved in the pathogenesis of Alzheimer disease (AD). Increased proteolytic processing and secretion of another membrane protein, the interleukin-1 receptor II (IL-1R2), have also been linked to the pathogenesis of AD. IL-1R2 is a decoy receptor that may limit detrimental effects of IL-1 in the brain. At present, the proteolytic processing of IL-1R2 remains little understood. Here we show that IL-1R2 can be proteolytically processed in a manner similar to APP. IL-1R2 expressed in human embryonic kidney 293 cells first undergoes ectodomain shedding in an alpha-secretase-like manner, resulting in secretion of the IL-1R2 ectodomain and the generation of an IL-1R2 C-terminal fragment. This fragment undergoes further intramembrane proteolysis by gamma-secretase, leading to the generation of the soluble intracellular domain of IL-1R2. Intramembrane cleavage of IL-1R2 was abolished by a highly specific inhibitor of gamma-secretase and was absent in mouse embryonic fibroblasts deficient in gamma-secretase activity. Surprisingly, the beta-secretase BACE1 and its homolog BACE2 increased IL-1R2 secretion resulting in C-terminal fragments nearly identical to the ones generated by the alpha-secretase-like cleavage. This suggests that both proteases may act as alternative alpha-secretase-like proteases. Importantly, BACE1 and BACE2 did not cleave several other membrane proteins, demonstrating that both proteases do not contribute to general membrane protein turnover but only cleave specific proteins. This study reveals a similar proteolytic processing of IL-1R2 and APP and may provide an explanation for the increased IL-1R2 secretion observed in AD.  相似文献   

5.
Epithin (PRSS14/matriptase/ST14), a type II membrane protein, is involved in progression of epithelial cancers and metastasis as well as in the normal epidermal barrier function. When activated, it translocates into the cell-cell contacts and sheds into media. In order to understand the specific mechanism during tumor progression, we tested the angiogenic potential of secreted form of epithin. Epithin produced from the cancer cells shed more in hypoxia and induced motility of endothelial cells. Epithin enhanced the migration and invasion of mouse and bovine endothelial cells without cell proliferation. Furthermore, soluble epithin induced endothelial differentiation in the assay of the human endothelial microvessel-like tube formation and in that of the chicken chorioallantoic membrane. The knock-down of epithin in the 427 thymoma cell line abolished the protease activity of secreted epithin fraction, reduced the invasion of endothelial cells through matrigel, and tube formation activity. Only specific antibodies abolished the migration of endothelial cell and the vessel morphogenesis, suggesting that epithin specifically functions in these systems. Therefore, we propose that the secreted epithin in the hypoxic cancer microenvironment plays a role as a proangiogenic factor, and can be modulated with specific antibodies.  相似文献   

6.
The sequential processing of single pass transmembrane proteins via ectodomain shedding followed by intramembrane proteolysis is involved in a wide variety of signaling processes, as well as maintenance of membrane protein homeostasis. Here we report that the recently identified frontotemporal lobar degeneration risk factor TMEM106B undergoes regulated intramembrane proteolysis. We demonstrate that TMEM106B is readily processed to an N-terminal fragment containing the transmembrane and intracellular domains, and this processing is dependent on the activities of lysosomal proteases. The N-terminal fragment is further processed into a small, rapidly degraded intracellular domain. The GxGD aspartyl proteases SPPL2a and, to a lesser extent, SPPL2b are responsible for this intramembrane cleavage event. Additionally, the TMEM106B paralog TMEM106A is also lysosomally localized; however, it is not a specific substrate of SPPL2a or SPPL2b. Our data add to the growing list of proteins that undergo intramembrane proteolysis and may shed light on the regulation of the frontotemporal lobar degeneration risk factor TMEM106B.  相似文献   

7.
Apical membrane antigen-1 (AMA1) is a conserved apicomplexan protein that plays an important but undefined role in host cell invasion. We have studied the fate of Plasmodium falciparum AMA1 (PfAMA1) during erythrocyte invasion by the malaria merozoite, and compared it with that of the Toxoplasma gondii orthologue, TgAMA1. Shedding of the PfAMA1 ectodomain goes essentially to completion during invasion, and occurs predominantly or exclusively via juxtamembrane cleavage at the previously identified sheddase cleavage site, Thr517. Only the resulting juxtamembrane stub of the ectodomain is efficiently carried into the host cell, and this remains distributed around the plasma membrane of the intracellular ring-stage parasite. Inhibition of normal shedding, however, results in proteolysis at an intramembrane, rhomboid-like cleavage site, and PfAMA1 is susceptible to cleavage by Drosophila rhomboid-1, showing that it can be a substrate for intramembrane cleavage but is not normally processed in this manner. In contrast, shedding of TgAMA1 from the surface of extracellular tachyzoites occurs exclusively via cleavage within the luminal half of its transmembrane domain by a rhomboid-like protease. Also unlike PfAMA1, complete TgAMA1 shedding does not accompany Toxoplasma invasion as the intact protein was readily detected on the surface of newly invaded tachyzoites. This work reveals unexpected differences in the manner in which Plasmodium and Toxoplasma shed AMA1 from the surface of invasive zoites, and demonstrates the presence at the malaria merozoite surface of a rhomboid-like protease.  相似文献   

8.
The low density lipoprotein receptor related protein 1B (LRP1B) is a large endocytic receptor that was first identified as a candidate tumor suppressor gene. In the current investigation we demonstrate that LRP1B undergoes regulated intramembrane proteolysis in a gamma-secretase-dependent process. The released intracellular domain (ICD) then translocates to the nucleus via a nuclear localization signal that is present within this domain. ICD release first requires shedding of the LRP1B ectodomain, which appears to be catalyzed by a member of the metalloproteinase family. Employing site-directed mutagenesis studies, we identified lysine residues 4432 and 4435 and arginine 4442 as key amino acids important for ectodomain shedding of LRP1B. We also demonstrate that an LRP1B minireceptor as well as the ICD domain alone suppresses anchorage-independent growth of LRP1B-deficient neuroglioma cells (H4 cells). Interestingly, abrogating ectodomain shedding resulted in a loss of the ability of LRP1B minireceptors to suppress anchorage-independent growth. Together, these studies reveal that LRP1B has tumor suppression function that is mediated by proteolytic processing of the receptor resulting in ICD release.  相似文献   

9.
10.
The presenilin/gamma-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-beta protein (Abeta) has made modulation of gamma-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and beta-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of gamma-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by gamma-secretase, we determined that besides a short ectodomain, gamma-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for gamma cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent gamma-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which gamma-secretase contributes.  相似文献   

11.
ADAM10 (a disintegrin and metalloprotease) initiates regulated intramembrane proteolysis by shedding the ectodomain of a number of different substrates. Shedding is followed by subsequent intramembrane proteolysis leading to the liberation of intracellular domains capable of nuclear signaling. ADAM10 substrates have been found at cell-cell contacts and are apparently involved in cell-cell interaction and cell migration. Here we have investigated the cellular mechanism that guides ADAM10 to substrates at cell-cell contacts. We demonstrate that intracellular trafficking of ADAM10 critically requires a novel sorting signal within its cytoplasmic domain. Sequential deletion of the cytoplasmic domain and site-directed mutagenesis suggest that a potential Src homology 3-binding domain is essential for ADAM10 sorting. In a polarized epithelial cell line this motif not only targets ADAM10 to adherens junctions but is also strictly required for ADAM10 function in E-cadherin processing and cell migration.  相似文献   

12.
Regulated intramembrane proteolysis is a widely accepted concept describing the processing of various transmembrane proteins via ectodomain shedding followed by an intramembrane cleavage. The resulting cleavage products can be involved in reverse signaling. Presenilins, which constitute the active center of the γ-secretase complex, signal peptide peptidase (SPP), and its homologues, the SPP-like (SPPL) proteases are members of the family of intramembrane-cleaving aspartyl proteases of the GXGD-type. We recently demonstrated that Bri2 (itm2b) is a substrate for regulated intramembrane proteolysis by SPPL2a and SPPL2b. Intramembrane cleavage of Bri2 is triggered by an initial shedding event catalyzed by A Disintegrin and Metalloprotease 10 (ADAM10). Additionally primary sequence determinants within the intracellular domain, the transmembrane domain and the luminal juxtamembrane domain are required for efficient cleavage of Bri2 by SPPL2b. Using mutagenesis and circular dichroism spectroscopy we now demonstrate that a high α-helical content of the Bri2 transmembrane domain (TMD) reduces cleavage efficiency of Bri2 by SPPL2b, while the presence of a GXXXG dimerization motif influences the intramembrane cleavage only to a minor extent. Surprisingly, only one of the four conserved intramembrane glycine residues significantly affects the secondary structure of the Bri2 TMD and thereby its intramembrane cleavage. Other glycine residues do not influence the α-helical content of the transmembrane domain nor its intramembrane processing.  相似文献   

13.
The discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is highly expressed in breast carcinoma cells. Upon binding to collagen, DDR1 undergoes autophosphorylation followed by limited proteolysis to generate a tyrosine phosphorylated C-terminal fragment (CTF). Although it was postulated that this fragment is formed as a result of shedding of the N-terminal ectodomain, collagen-dependent release of the DDR1 extracellular domain has not been demonstrated. We now report that, in conjunction with CTF formation, collagen type I stimulates concentration-dependent, saturable shedding of the DDR1 ectodomain from two carcinoma cell lines, and from transfected cells. In contrast, collagen did not promote cleavage of other transmembrane proteins including the amyloid precursor protein (APP), ErbB2, and E-cadherin. Collagen-dependent tyrosine phosphorylation and proteolysis of DDR1 in carcinoma cells were reduced by a pharmacologic Src inhibitor. Moreover, expression of a dominant negative Src mutant protein in human embryonic kidney cells inhibited collagen-dependent phosphorylation and shedding of co-transfected DDR1. The hydroxamate-based metalloproteinase inhibitor TAPI-1 (tumor necrosis factor-alpha protease inhibitor-1), and tissue inhibitor of metalloproteinase (TIMP)-3, also blocked collagen-evoked DDR1 shedding, but did not reduce levels of the phosphorylated CTF. Neither shedding nor CTF formation were affected by the gamma-secretase inhibitor, L-685,458. The results demonstrate that collagen-evoked ectodomain cleavage of DDR1 is mediated in part by Src-dependent activation or recruitment of a matrix- or disintegrin metalloproteinase, and that CTF formation can occur independently of ectodomain shedding. Delayed shedding of the DDR1 ectodomain may represent a mechanism that limits DDR1-dependent cell adhesion and migration on collagen matrices.  相似文献   

14.
The membrane PTK7 pseudokinase, a component of both the canonical and noncanonical/planar cell polarity Wnt pathways, modulates cell polarity and motility in biological processes as diverse as embryo development and cancer cell invasion. To determine the individual proteolytic events and biological significance of the ectodomain shedding in the PTK7 function, we used highly invasive fibrosarcoma HT1080 cells as a model system. Current evidence suggested a likely link between PTK7 shedding and cell invasion in our HT1080 cell model system. We also demonstrated that in HT1080 cells the cleavage of the PTK7 ectodomain by an ADAM proteinase was coupled with the membrane type-1 matrix metalloproteinase (MT1-MMP) cleavage of the PKP621↓LI site in the seventh Ig-like domain of PTK7. Proteolytic cleavages led to the generation of two soluble, N-terminal and two matching C-terminal, cell-associated fragments of PTK7. This proteolysis was a prerequisite for the intramembrane cleavage of the C-terminal fragments of PTK7 by γ-secretase. γ-Secretase cleavage was predominantly followed by the efficient decay of the resulting C-terminal PTK7 fragment via the proteasome. In contrast, in HT1080 cells, which overexpressed the C-terminal PTK7 fragment, the latter readily entered the nucleus. Our data imply that therapeutic inhibition of PTK7 shedding may be used to slow cancer progression.  相似文献   

15.
Protein ectodomain shedding, the proteolytic release of the extracellullar domain of membrane-tethered proteins, can dramatically affect the function of cell surface receptors, growth factors, cytokines, and other proteins. In this study, we evaluated the activities involved in ectodomain shedding of p75NTR, a neurotrophin receptor with critical roles in neuronal differentiation and survival. p75NTR is shed in a variety of cell types, including dorsal root ganglia cells and PC12 cells. In Chinese hamster ovary cells, inhibitors of the MEK/ERK and p38 MAP kinase pathways uncovered distinct signaling pathways required for the constitutive and stimulated shedding of p75NTR. Stimulated p75NTR shedding is abrogated in M2 mutant Chinese hamster ovary cells that lack functional tumor necrosis factor-alpha converting enzyme (TACE, also referred to as ADAM17) and in cells isolated from adam17-/- mice, but not in cells from adam9/12/15-/- or adam10-/- mice. Stimulated p75(NTR) shedding is strongly reduced by deletion of 15 amino acid residues in its extracellular membrane-proximal stalk domain. However, similar to other shed proteins, point mutations and overlapping shorter deletions within this region have little or no effect on shedding. Because ectodomain shedding of p75NTR releases a soluble ectodomain and could also be a prerequisite for its regulated intramembrane proteolysis, these findings may have important implications for the functional regulation of p75NTR.  相似文献   

16.
Regulated intramembrane proteolysis (RIP) controls the communication between cells and the extracellular environment. RIP is essential in the nervous system, but also in other tissues. In the RIP process, a membrane protein typically undergoes two consecutive cleavages. The first one results in the shedding of its ectodomain. The second one occurs within its transmembrane domain, resulting in secretion of a small peptide and the release of the intracellular domain into the cytosol. The proteolytic cleavage fragments act as versatile signaling molecules or are further degraded. An increasing number of membrane proteins undergo RIP. These include growth factors, cytokines, cell adhesion proteins, receptors, viral proteins and signal peptides. A dysregulation of RIP is found in diseases, such as leukemia and Alzheimer's disease. One of the first RIP substrates discovered was the amyloid precursor protein (APP). RIP processing of APP controls the generation of the amyloid β-peptide, which is believed to cause Alzheimer's disease. Focusing on APP as the best-studied RIP substrate, this review describes the function and mechanism of the APP RIP proteases with the goal to elucidate cellular mechanisms and common principles of the RIP process in general.  相似文献   

17.
18.
Presenilin, the catalytic component of the gamma-secretase complex, type IV prepilin peptidases, and signal peptide peptidase (SPP) are the founding members of the family of intramembrane-cleaving GXGD aspartyl proteases. SPP-like (SPPL) proteases, such as SPPL2a, SPPL2b, SPPL2c, and SPPL3, also belong to the GXGD family. In contrast to gamma-secretase, for which numerous substrates have been identified, very few in vivo substrates are known for SPP and SPPLs. Here we demonstrate that Bri2 (Itm2b), a type II-oriented transmembrane protein associated with familial British and Danish dementia, undergoes regulated intramembrane proteolysis. In addition to the previously described ectodomain processing by furin and related proteases, we now describe that the Bri2 protein, similar to gamma-secretase substrates, undergoes an additional cleavage by ADAM10 in its ectodomain. This cleavage releases a soluble variant of Bri2, the BRICHOS domain, which is secreted into the extracellular space. Upon this shedding event, a membrane-bound Bri2 N-terminal fragment remains, which undergoes intramembrane proteolysis to produce an intracellular domain as well as a secreted low molecular weight C-terminal peptide. By expressing all known SPP/SPPL family members as well as their loss of function variants, we demonstrate that selectively SPPL2a and SPPL2b mediate the intramembrane cleavage, whereas neither SPP nor SPPL3 is capable of processing the Bri2 N-terminal fragment.  相似文献   

19.
Kim C  Cho Y  Kang CH  Kim MG  Lee H  Cho EG  Park D 《EMBO reports》2005,6(11):1045-1051
Epithin is a type II transmembrane serine protease that exists in a soluble and membrane-bound form. Shedding is thought to be important in regulating its action, but little is known regarding the intracellular events that trigger such shedding. Here, we show that phorbol myristate acetate (PMA) causes the release of epithin. It also causes accumulation of the protein at the site of cell-cell contacts, and this accumulation is dependent on the formation of cortical actin. In addition, we have identified the actin-binding protein, filamin, as the linker between epithin and the actin cytoskeleton. The interaction of epithin and filamin was enhanced by PMA, and epithin was not released from filamin-deficient M2 cells. We also show that the release of epithin does not require its own activity and is blocked by a metalloprotease inhibitor, GM6001. These results show that filamin has an essential role in shedding by linking epithin to the as yet unidentified metalloprotease-shedding enzyme(s).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号