首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three dimensional organization of the complete photosynthetic apparatus of the extremely halophilic, bacteriochlorophyll b containing Ectothiorhodospira halochloris has been elaborated by several techniques of electron microscopy. Essentially all thylakoidal sacs are disc shaped and connected to the cytoplasmic membrane by small membraneous bridges. In sum, the lumina of all thylakoids (intrathylakoidal space) form one common periplasmic space. Thin sections confirm a paracrystalline arrangement of the photosynthetic complexes in situ. The ontogenic development of the photosynthetic apparatus is discussed based on a structural model derived from serial thin sections.Abbreviations E. Ectothiorhodospira - bchl bacteriochlorophyll - R. Rhodopseudomonas - RC reaction center  相似文献   

2.
Antenna polypeptides from two species of the family Ectothiorhodospiraceae have been investigated. By means of gel filtration and subsequent high-performance liquid chromatography, at least five polypeptides were isolated from each of Ectothiorhodospira halochloris and Ectothiorhodospira halophila. The majority of their primary structures was identified by Edman degradation. Comparison of these polypeptide sequences with the known primary structures of antenna polypeptides from various purple non-sulfur bacteria revealed interesting new aspects with regard to the structure of the core-peripheral antenna system. E. halochloris and E. halophila contain two pairs of alpha- and beta-polypeptides each with typical primary structure elements of core complexes, indicating a modified antenna complex organization.  相似文献   

3.
The carotenoids in Halorhodospira abdelmalekii and Halorhodospira halochloris were analyzed by spectroscopic methods. The carotenoid composition of the two species was almost the same. Both species contained substantial amounts of unusual carotenoid glycoside fatty acid esters, which have been found for the first time in phototrophic purple bacteria. Methoxy-hydroxylycopene glucoside was a major component, and dihydroxylycopene diglucoside and dihydroxylycopene diglucoside diester were also found. Lycopene, rhodopin, and 3,4,3',4'-tetrahydrospirilloxanthin were present in very small amounts. Methoxy, glucosyl, and glucosyl ester groups were observed as substituents at the positions of the two original hydroxyl groups of dihydroxylycopene and made up approximately 20, 50, and 20%, respectively, of the total end groups (100%). The fatty acid components of the three carotenoid glucoside esters were the same (C12:0 and C14:1) and were rare in the cellular lipids of the two species.  相似文献   

4.
We have studied the effects of the detergent lauryl dimethylamine N-oxide and NaCl in the near infrared absorption spectra of the B800–850 antenna complex from Ectothiorhodospira sp. Strong spectral changes were induced on the BChl850 band by the lauryl dimethylamine N-oxide consisting of a blue shift, from 857 to 839–837 nm, and a hypochromism. No significant effects were detected on the BChl800 band in the same conditions. The changes were reversible after removing most of the detergent from the sample. Depending upon the detergent concentration in the solution, NaCl was also able to reverse the blueshift and increase the intensity of the 850 nm band close to the native values. Moreover, we have been able to separate both phenomena. Addition of 0.350 M NaCl after sample incubation with 0.15% (v/v) lauryl dimethylamine N-oxide for 30 min allowed a 9–10 nm redshift with no significant hyperchromism of the lowest energy band. We explained the overall effect of the detergent assuming that the lauryl dimethylamine N-oxide bound to the hydrophobic moiety of the complex and caused some protein conformational changes which affected the BChl850 domain without affecting that of the BChl800. The NaCl was able to circumvent these effects, most probably by acting directly on the BChl850 molecules or on the protein structure surrounding them.Abbreviations BChl bacteriochlorophyll - LDAO lauryl dimethylamine N-oxide - NIR near infrared  相似文献   

5.
Ectothiorhodospira halochloris grows photoheterotrophically with a variety of sulfur sources. During sulfide oxidation to elemental sulfur considerable amounts of polysulfides may be accumulated transiently. When grown on elemental sulfur no sulfate was produced by oxidation, but sulfide and polysulfide were formed by reduction. Only one soluble cytochrome c-551 was isolated and purified. It was a small acidic hemeprotein with a molecular weight of 6,300, an isoelectric point of 3.1 and a redox potential of-11 mV at pH 7.0. It showed three absorption maxima in the reduced state (=551 nm; =523 nm; =417 nm). The addition of various c-type cytochromes to a suspension of spheroplasts stimulated the velocity of sulfide oxidation. This stimulation was best with the small acidic cytochromes from E. halochloris or Ectothiorhodospira abdelmalekii. Sulfide oxidation was stopped by several uncoupling agents, ionophores and electron transport inhibitors. Antimycin A, rotenone and cyanide had no effect on sulfide oxidation.Dedicated to Prof. Dr. H. G. Schlegel on the occasion of his 60th birthday  相似文献   

6.
Chlorosome antenna complexes from green photosynthetic bacteria   总被引:1,自引:0,他引:1  
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment–pigment interactions as opposed to protein–pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.  相似文献   

7.
8.
9.
Trehalase, which hydrolyzes the disaccharide trehalose to -d-glucose was isolated and partially purified (124-fold) from the phototrophic halo-alkaliphilic bacterium Ectothiorhodospira halochloris. The molecular mass was determined to be 480,000 and the isoelectric point pH 5.6. Temperature optimum was found to be 40°C and the pH-optimum 7.8–8.1. In spite of its high K m-value of 0.5 M, trehalase of E. halochloris was shown to be specific for trehalose. Trehalase is activated by phosphate which is, however, not involved in the reaction mechanism. The enzyme is activated by the compatible solute betaine and inhibited by salts. In the presence of betaine the K m-value is lowered from 0.5 M to 0.16 M; moreover, betaine partially protects enzymatic activity from salt inhibition. The findings indicate that betaine might regulate the trehalose level in the cells by affecting trehalase activity.  相似文献   

10.
The halophilic phototrophic bacterium Ectothiorhodospira halochloris is able to synthesize both nitrogen-containing (betaine, ectoine) and nitrogen-free (trehalose) compatible solutes. In the absence of external ammonium and under nitrogen-limited growth conditions ectoine was metabolized and trehalose partly replaced betaine. The cytoplasmic trehalose concentration did not exceeded 0.5 mol/kg water (approx. 30% of total compatible solutes). A decreasing content of betaine in cells growing under nitrogen limitation is a result of decreased biosynthesis. Apparently, the betaine pool cannot be used as a nitrogen source, not even in a situation of total nitrogen depletion.  相似文献   

11.
A cytochrome c-551 was isolated and purified from Ectothiorhodospira abdelmalekii. It is a small acidic haemoprotein with a molecular weight of 9,500, an isoelectric point of 3.5 and a redox potential of-7 mV at pH 7.0. It showed three maxima in the reduced state (=551, =529, =417). The best purity index (A280/A417) obtained was 0.29. During sulfide oxidation to elemental sulfur a considerable amount of polysulfides were transiently accumulated. The digestion experiment can be taken to indicate that cytochrome c-551 is localized on the outside of the cell membrane. The addition of cytochrome c-551 to a suspension of spheroplasts stimulated the velocity of sulfide oxidation. These experiments support the interpretation that cytochrome c-551 may be a sulfide: acceptor oxidoreductase.In memory of Prof. Yousef Abd-el-Malek, who died in a traffic accident February 12, 1983  相似文献   

12.
The aim of this study was to investigate the spectral modifications of the LHII antenna complex from the purple bacterium Ectothiorhodospira sp. upon acid pH titration both in the presence and absence of urea. A blue shift specifically and reversibly affected the B850 band around pH 5.5-6.0 suggesting that a histidine residue most probably participated in the in vivo absorption red shifting mechanism. This transition was observed in the presence and absence of urea. Under strong chaotropic conditions, a second transition occurred around pH 2.0, affecting the B800 band irreversibly and the B850 reversibly. Under these conditions a blue shift from 856 to 842 nm occurred and a new and strong circular dichroism signal from the new 842 nm band was observed. Reverting to the original experimental conditions induced a red shift of the B850 band up to 856 nm but the circular dichroism signal remained mostly unaffected. Under the same experimental conditions, i.e. pH 2.1 in the presence of urea, part of the B800 band was irreversibly destroyed with concomitant appearance of a band around 770 nm due to monomeric bacteriochlorophyll from the disrupted B800. Furthermore, Gaussian deconvolution and second derivative of the reverted spectra at pH 8.0 after strong-acid treatment indicated that the new B850 band was actually composed of two bands centered at 843 and 858 nm. We ascribed the 858 nm band to bacteriochlorophylls that underwent reversible spectral shift and the 843 nm band to oligomeric bacteriopheophytin formed from a part of the B850 bacteriochlorophyll. This new oligomer would be responsible for the observed strong and mostly conservative circular dichroism signal. The presence of bacteriopheophytin in the reverted samples was definitively demonstrated by HPLC pigment analysis. The pheophytinization process progressed as the pH decreased below 2.1, and at a certain point (i.e. pH 1.5) all bacteriochlorophylls, including those from the B800 band, became converted to oligomeric bacteriopheophytin, as shown by the presence of a single absorption band around 843 nm and by the appearance of a single main elution peak in the HPLC chromatogram which corresponded to bacteriopheophytin.  相似文献   

13.
We have used a new and relatively easy approach to study the pigment-organization in chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus and in B800-850 antenna complexes of the photosynthetic purple bacterium Rhodobacter sphaeroides. These particles were embedded in compressed and uncompressed gels and the polarized fluorescence was determined in a 90° setup. Assuming both a rotational symmetric distribution of the particles in the gel and of the transition dipole moments in the particles, the order parameters <P2> and <P4>, describing the orientation of the symmetry axis of the particles with respect to the direction of gel expansion can be determined. Moreover, the direction parameters, describing the orientation of the absorption and emission dipole moments with respect to the symmetry axis of the particles can be obtained.

The value of <P2> is essential for quantitative interpretation of linear dichroism measurements and usually it is estimated from theoretical approaches, which may lead to incorrect results. For the rod-like chlorosomes the value of <P2> appears to be the same as predicted by the theoretical approach of Ganago, A. O., M. V. Fok, I. A. Abdourakhmanov, A. A. Solov'ev, and Yu. E. Erokhin (1980. Mol. Biol. [Mosc.]. 14:381-389). The agreement with linear dichroism results, analyzed with this theoretical approach shows that the transition dipole moments are indeed in good approximation distributed in a rotationally symmetric way around the long axis of the chlorosomes. Moreover, it appears those BChl c molecules, which fluoresce, are oriented in the same way with respect to the symmetry axis as the rest of these pigments, with the dipole moments close to parallel to the long axis.

The B800-850 complexes appear to orient like discs, whereas the transition dipoles of the BChl a 800- and 850-nm bands are oriented almost perpendicular to the symmetry axis. These findings are in agreement with the minimal model for these complexes proposed by Kramer, H. J. M., R. van Grondelle, C. N. Hunter, W. H. J. Westerhuis, and J. Amesz (1984. Biochim. Biophys. Acta. 156-165).

The amount of orientation of the particles appears to vary for different gels and it is lower than predicted by the theory of Ganago et al., showing that application of their approach for these particles leads to incorrect interpretations.

The approach that is used in this study allows determination of orientations of those dipole moments, which transfer their excitation energy to the fluorescing species, in contrast to linear dichroism measurements, where the orientations of all absorbing dipole moments are studied. For the polarized fluorescence measurements, the amount of orientation of the particles is determined experimentally, whereas for linear dichroism this amount has to be estimated from theoretical models. The value of <P2> that can be determined from the fluorescence measurements can, however, also be used for a quantitative interpretation of the linear dichroism results.

  相似文献   

14.
15.
Several models have been proposed for the arrangements of the bacteriochlorophylls in the antenna complexes of purple photosynthetic bacteria, but none of the models has accounted fully for the spectroscopic properties of the bacteriochlorophyll-protein complexes. We suggest a model involving strong exciton interactions within a bacteriochlorophyll dimer, and weaker interactions of each dimer with other, relatively distant dimers. The model is shown to account for the spectroscopic properties of the complexes, and to be consistent with other available information.Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   

16.
Certain redox properties of bacteriochlorophyll alpha were used to probe the structure of several light-harvesting pigment-protein complexes or holochromes. To attribute redox properties unequivocally to a given holochrome, we worked with purified holochromes. We developed purification procedures for the B880 holochromes from Rhodospirillum rubrum, Rhodopseudomonas sphaeroides and Ectothiorhodospira sp. and for the B800-850 holochromes from the latter two species. In all these holochromes, bacteriochlorophyll alpha could be oxidized by ferricyanide as witnessed by the bleaching of their near-infrared absorption bands. However, only in B880 holochromes was this oxidation reversible. Another important difference between the B800-850 and the B880 holochromes is that oxidation of the latter gives rise to a g = 2.0025 electron paramagnetic resonance (EPR) signal with linewidth varying, according to species, from 0.37 mT to 0.48 mT. Both the reversible EPR signal and absorption changes titrate with a midpoint redox potential (pH 8.0) of approximately 570 mV. Linewidth narrowing can be interpreted by delocalization of the free electron spin over approximately 12 bacteriochlorophyll molecules. While the B880 holochromes from the three species considered had indistinguishable redox properties, the B800-850 holochromes differed from one another by their circular dichroic spectra and by the relative ease of oxidation of their 800-nm and 850-nm bands. This indicates that, contrary to the B880 holochromes, the B800-850 holochromes may not form a homogeneous class.  相似文献   

17.
Centrifugation through a cesium chloride density gradient and agarose gel electrophoresis of the DNA from the purple non-sulfur photosynthetic bacterium Ectothiorhodospira sp. resolved a single extrachromosomal element, plasmid pDG1. Its size was estimated to be 13.2 kilobases by restriction endonuclease mapping. Plasmid pDG1 and two restriction fragments thereof were cloned in Escherichia coli C600 with plasmid pBR327 as a vector to form mixed plasmids pDGBR1, pDGBR2, and pDGBR3. The resistance to streptomycin and mercury found in Ectothiorhodospira sp. was transferred to E. coli C600 after transformation with pDGBR1 but not with pDGBR2 and pDGBR3. The replication origin of pDG1 was estimated to be within a 2-kilobase restriction fragment of pDG1 by monitoring its replication in E. coli HB101, using a kanamycin resistance reporter gene. High stringency molecular hybridization with 32P-labeled pDG1 identified specific fragments of genomic DNA, suggesting the integration of some plasmid sequences. In accordance with the hypothesis that this integration is due to a transposon, we tested the transfer of streptomycin resistance from pDG1 into plasmid pVK100 used as a target. For this test, we regrouped in the same cells of E. coli HB101, pDGBR1 and mobilizable plasmid pVK100 (tetr,kmr). We used the conjugation capacity of the pVK100/pRK2013 system to rescue the target plasmid pVK100 into nalidixic acid-resistant E. coli DH1. The transfer frequency of streptomycin resistance into pVK100 was 10(-5), compatible with a transposition event. In line with the existence of a transposon on pDG1, heteroduplex mapping indicated the presence of inverted repeats approximately 7.5 kb from one another.  相似文献   

18.
Fluorescence spectra of single chlorosomes isolated from a green filamentous bacterium (Chloroflexus (Cfl.) aurantiacus) and a green sulfur bacterium (Chlorobium (Cb.) tepidum) were measured by using a confocal laser microscope at 13 K. Chlorosomes were frozen either in a liquid solution (floating chlorosome) or on a quartz plate after being adsorbed (adsorbed chlorosome). Fluorescence peak wavelengths were shorter for the adsorbed single chlorosomes than for the floating ones. Single floating Cfl. chlorosomes showed a distribution of fluorescence peak positions having a center at 759.0 nm with a full width at half maximum of 6.3 nm. Single floating Cb. chlorosomes showed a 782.7 nm center with a full width at half-maximum of 3.4 nm. The distribution shifted to the blue and became wider with increasing temperature, especially in Cb. chlorosomes, suggesting a large excitonic density of states just above the lowest level. Energy transfer from BChl-c aggregates to BChl-a molecules in the baseplate proteins was observed in the floating chlorosomes but not in the adsorbed ones. A positive correlation was found between the peak wavelength of BChl-c fluorescence and the intensity of BChl-a fluorescence in single Cfl. chlorosomes. The results suggest that the BChl-c aggregates with longer wavelengths of the fluorescence peaks have a more efficient F?rster-type energy transfer to the baseplate BChl-a.  相似文献   

19.
20.
An Ectothiorhodospira species fixed nitrogen when grown as an autotroph in completely inorganic medium by using a variety of electron donors. The organism also used organic carbon sources; however, this required induction of synthesis of various enzymes, whereas the enzymes needed for autotrophic growth were synthesized constitutively. Nitrogenase induction and function were inhibited by ammonium chloride. Nitrogenase activity was dependent on light and inhibited by oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号