首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1983,97(5):1544-1558
Developmental changes in the plasma membrane proteins of Dictyostelium discoideum have been studied using metabolic labeling with [35S]methionine and two-dimensional electrophoresis. Pulse labeling for 1 h at the early interphase, late interphase, aggregation, and tip formation stages of development showed that the profile of newly synthesized plasma membrane proteins changed dramatically over this interval. Only 14% of the polypeptide species were synthesized at all four stages at detectable levels; 86% of the species changed over this developmental interval according to the criterion that they were synthesized at some but not all of the four stages tested. Long-term labeling during vegetative growth followed by initiation of development showed that the "steady-state" levels of the plasma membrane proteins changed very little over the same period. The only changes were in minor species (33% overall change). Similar analyses of whole cell proteins showed 27 and 20% change, respectively. Cell surface radioiodination revealed 52 external proteins in the plasma membrane. Comparison with the uniform methionine labeling results showed that these proteins were, with one notable exception, minor membrane components. In these external proteins, also, developmental changes were limited and were observed in the less abundant species. These results demonstrate the existence of two general classes of plasma membrane proteins. The first is a population of high-abundance proteins that are present in vegetative cells and are largely conserved through development. These possibly serve "housekeeping" functions common to all stages. The second class consists of low-abundance species that are expressed in a highly stage-specific manner and which presumably participate in developmentally important functions.  相似文献   

2.
3.
4.
By the use of a shake culture system, we have previously shown (Oyama, M., Okamoto, K., & Takeuchi, I. (1982) J. Cell Sci. 56, 223-232) that both cAMP and cAMP-dependent cell contact are required for prespore differentiation in Dictyostelium discoideum. The present study was undertaken to examine changes of the plasma membrane proteins during prespore differentiation in the shake culture system. Rabbit antibodies prepared against the plasma membrane fraction of the differentiated cells inhibited the reaggregation of the differentiated cells but not that of aggregation-competent cells. This result indicates that new contact sites are formed in the differentiated cells. By the combined use of the antibody-conjugated immuno-adsorbent with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, changes of membrane proteins were analyzed with the cells incubated under various conditions. Three proteins were found to be present specifically in the differentiated cells only in the presence of cAMP, one of which (105K protein) appeared when cells became adhesive, but before prespore specific proteins were detected. Two others (80K and 58K proteins) appeared during prespore differentiation after cells formed agglomerates.  相似文献   

5.
A procedure for the isolation and separation of three different subfractions of plasma membrane from the cellular slime mould Dictyostelium discoideum is described. The cells were disrupted by freeze-thawing in liquid N(2) and plasma membranes were purified by equilibrium centrifugation in a sucrose gradient. The cell surface was labelled with radioactive iodide by using the lactoperoxidase iodination method. Alkaline phosphatase was identified as a plasma-membrane marker by its co-distribution with [(125)I]iodide. 5'-Nucleotidase, which has been widely described as a plasma-membrane marker enzyme in mammalian tissues, was not localized to any marked extent in D. discoideum plasma membrane. The isolated plasma membranes showed a 24-fold enrichment of alkaline phosphatase specific activity relative to the homogenate and a yield of 50% of the total plasma membranes. Determination of succinate dehydrogenase and NADPH-cytochrome c reductase activities indicated that the preparation contained 2% of the total mitochondria and 3% of the endoplasmic reticulum. When the plasma-membrane preparation was further disrupted in a tight-fitting homogenizer, three plasma-membrane subfractions of different densities were obtained by isopycnic centrifugation. The enrichment of alkaline phosphatase was greatest in the subfraction with the lowest density. This fraction was enriched 36-fold relative to the homogenate and contained 19% of the total alkaline phosphatase activity but only 0.08% of the succinate dehydrogenase activity and 0.34% of the NADPH-cytochrome c reductase activity. Electron microscopy of this fraction showed it to consist of smooth membrane vesicles with no recognizable contaminants.  相似文献   

6.
Dictyostelium discoideum grown axenically in media containing polyunsaturated fatty acids exhibited normal growth rates but impaired differentiation (Weeks, G. (1976) Biochim. Biophys. Acta 450, 21--32). Since cell-cell contact is vital for differentiation but unnecessary for growth we have examined the isolated plasma membranes of these cells. The lipids of the plasma membranes of cells grown in the presence of polyunsaturated fatty acids contain considerable quantities of these acids, but the total phospholipid and sterol contents of the plasma membrane are close to normal. Electron spin resonance studies using 5-doxyl-stearic acid as the spin probe reveal two things. Firstly, there are no detectable characteristic transition temperatures in the plasma membranes of D. discoideum. Secondly, the plasma membranes of cell grown in the presence of polyunsaturated fatty acids have essentially the same fluidity as that of the control cells. The possible significance of this result to impaired cell-cell interaction is discussed.  相似文献   

7.
Characterization of a vacuolar proton ATPase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
Of the total ATPase activity in homogenates of the ameba, Dictyostelium discoideum, approximately one-third was inhibited at pH 7 by 25 microM 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Upon isopycnic sucrose density gradient centrifugation, the bulk of the NBD-CI-sensitive ATPase activity was recovered in a major membrane fraction with a broad peak at 1.16 g/ml, well-resolved from markers for plasma membranes, mitochondria, lysosomes and contractile vacuoles. The gradient peak had a specific activity of 0.5 mumol/min per mg protein. The activity was half-inhibited by 1 microM silicotungstate, 2 microM diisothiocyanatostilbene disulfonate (DIDS), 2.5 microM dicyclohexylcarbodiimide (DCCD), 4 microM NBD-CI and 20 microM N-ethylmaleimide (NEM) but was resistant to conventional inhibitors of mitochondrial and plasma membrane ATPase. That this ATPase activity constituted a proton pump was shown by the MgATP-dependent uptake and quenching of Acridine orange fluorescence by partially purified vacuoles. The Acridine orange uptake was specifically blocked by the aforementioned inhibitors. The generation of proton electrochemical gradients was suggested by the stimulation of enzyme activity by protonophores (fatty acids) and cation exchangers (nigericin). Uncoupling stimulated the ATPase activity as much as 20-fold, revealing an unusually high impermeability of the membranes to protons. ATPase activity was also stimulated by halide ions, apparently through a parallel conductance pathway. Under a variety of sensitive test conditions, the reverse enzyme reaction (i.e., incorporation of 32Pi into ATP) was not detected. We conclude that this major H+-ATPase serves to acidify the abundant prelysosomal vacuoles found in D. discoideum (Padh et al. (1989) J. Cell Biol. 108, 865-874). The finding of a vacuolar H+-ATPase in a protist suggests the ubiquity of this enzyme among the eukaryotic kingdoms.  相似文献   

8.
A method for the isolation and purification of plasma membranes of Dictyostelium discoideum by equilibrium centrifugation on sucrose followed by Renografin continuous density gradients has been developed and monitored both with electron microscopy and a number of enzyme assays. On electron microscopy, the final plasma membrane fractions are judged to be freethe basis of of nuclei, rough endoplasmic reticulum, lysosomes and peroxisomes. Some profiles of the mitochondrial inner membranes are found within the plasma membrane fractions, but this contamination has been estimated to be only 5%. On the basis on enzyme assays, the plasma membrane fractions contain all the 5'-nucleotidase activity in the final gradients and are free of catalase, acid phosphatase and malate dehydrogenase activity (markers for peroxisomes, lysosomes, soluble enzymes and the matrix of mitochondria). Their content of glucose-6-phosphatase is reduced by more than 70%. The large majority of RNA and DNA have been removed from the preparation.  相似文献   

9.
During the aggregation and differentiation of amoebae of Dictyostelium discoideum, changes in free cytosolic Ca2+ appear to regulate a number of physiological processes. To understand the mechanisms regulating free intracellular Ca2+ in this organism, we have isolated and characterized an ATP/Mg2+-dependent, high-affinity Ca2+ pump. When homogenates of 2 h starved cells were fractionated on Percoll/KCl gradients, one peak of high-affinity Ca2+-pumping activity was detected. This activity was resolved from enzyme markers of the mitochondrion and the rough endoplasmic reticulum but it cosedimented with the plasma membrane marker, alkaline phosphatase. Further studies suggested that the pump was associated with 'inside-out' plasma membrane vesicles. Like plasma membrane Ca2+-transport ATPases from other systems, this isolated Ca2+ pump: (1) was Mg2+-dependent, (2) displayed a high specificity for ATP as an energy source, (3) exhibited a high affinity for free Ca2+ with a Km of 0.3 microM, and (4) was very sensitive to inhibition by vanadate (IC50 2 microM) but was unaffected by mitochondrial inhibitors, ouabain and Ca2+-channel blockers. Unlike plasma membrane Ca2+ pumps from most other systems, this enzyme appeared not to be regulated by calmodulin. During development, non-mitochondrial, vanadate-sensitive, high-affinity Ca2+-pumping activity in crude lysates remained relatively constant for at least 15 h. These observations suggest that this plasma membrane Ca2+ pump probably functions in Dictyostelium to maintain Ca2+ homeostasis by extruding free cytosolic Ca2+ from the cells.  相似文献   

10.
Through the application of a unique method for isolating plasma membranes, it was possible to specifically iodinate cytoplasm-exposed plasma membrane proteins in vegetative cells of the cellular slime mold Dictyostelium discoideum. The original procedure [Chaney, L. K., & Jacobson, B. S. (1983) J. Biol. Chem. 258, 10062] which involved coating cells with colloidal silica has been modified to yield a more pure preparation. The presence of the continuous and dense silica pellicle on the outside surface of the isolated plasma membrane permitted the specific labeling of cytoplasm-exposed membrane proteins. Lactoperoxidase-catalyzed iodination was employed to label cell-surface and cytoplasm-exposed membrane proteins. The isolated and radioiodinated membranes were then compared and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cell-surface and cytoplasmic face labeling patterns were distinct. A total of 65 proteins were found to be accessible to at least one surface of the membrane. Sixteen intermolecular disulfide bond complexes were observed in the plasma membrane of Dictyostelium; most of these complexes involved glycoproteins and, hence, were exposed to the cell surface.  相似文献   

11.
A new procedure for the purification of plasma membranes of Dictyostelium discoideum is described. Cells are broken by vigorously stirring in the presence of glass beads, and plasma membranes are isolated by equilibrium sucrose density centrifugation. The purified membranes are considerably enriched in alkaline phosphatase and 5'-nucleotidase and contain very low levels of succinate dehydrogenase and NADPH-cytochrome c reductase. The purified membranes contain relatively high levels of phospholipid, sterol and carbohydrate. They appear as a relatively homogeneous population of membrane vesicles in the electron microscope. This new method of purification is compared to previously published procedures which have been found to be unsuitable for our purposes.  相似文献   

12.
Evidence is presented for the presence of both diethylstilbestrol (DES)-sensitive and DES-insensitive Mg2+-ATPase activities in plasma membrane enriched fractions of Dictyostelium discoideum. When removed from the membrane, the DES-sensitive activity is markedly less stable than the DES-insensitive activity, and the two activities display a number of quite distinct properties. The DES-sensitive enzyme has a decided preference for Mg2+ over Ca2+, displays saturation kinetics in response to ATP as substrate (Km = 0.2 mM) and has a narrow pH optimum range. In contrast, the DES-insensitive activity is stimulated equally by Mg2+ or Ca2+, is not saturable by ATP within the mM concentration range and has a much broader pH optimum. The DES-insensitive activity has been purified extensively. The purified enzyme is inhibited by vanadate and fluoride, but is insensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide and thimerosal. In the absence of divalent cations, the enzyme displays a sigmoidal activity curve in response to substrate concentration, which is abolished by addition of either Mg2+ or Ca2+, suggesting a binding site for a divalent cation and a positive cooperative interaction. The enzyme is capable of hydrolyzing other nucleotide triphosphates and ADP, but is without activity on AMP, p-nitrophenyl phosphate and pyrophosphate. The enzyme has an apparent molecular weight of approximately 64,000.  相似文献   

13.
Previous experiments have demonstrated that during the development of the cellular slime mold, Dictyostelium discoideum, the macromolecular composition of the plasma membrane changes dramatically. In addition, the exposure on the external face of the plasma membrane of some developmentally conserved polypeptides varies during development. When development and differentiation were prevented with cycloheximide or mutation, the bulk of the changes in composition were prevented. These treatments also prevented the disappearance of macromolecules and were particularly effective in preventing changes of glycoprotein composition. Similarly, the program of developmental changes of exposure of polypeptide was disrupted by both treatments. Cycloheximide, but not the mutation, stimulated the premature disappearance of six external polypeptides. This may reflect a rapid turnover of these polypeptides, which cannot be replaced in the absence of protein synthesis.  相似文献   

14.
During the first 24 h of sexual development in Dictyostelium discoideum, three sequential events of membrane fusion occur: gamete fusion, pronuclear fusion, and phagocytosis. The early events of sexual development are regulated by a diverse group of endogenous molecules: (i) a volatile sexual pheromone, (ii) a protein cell fusion inducing factor (CFIF), (iii) a low molecular weight autoinhibitor, (iv) and cyclic AMP. CFIC enhances cell fusion while the autoinhibitor and cyclic AMP both inhibit the event. Both extracellular and intracellular calcium ions are essential for cell and pronuclear fusion. Pharmacological analyses show that the intracellular functions of the divalent cation in these processes are mediated by calmodulin. The autoinhibitor appears to function by inhibiting calmodulin activity. Glucose, mannose, and N-acetylglucosamine containing glycoproteins have been shown to function in both cell fusion and phagocytosis. The interplay between all of these diverse molecules is examined and a review of all of the recent literature is presented.  相似文献   

15.
The intracellular redistribution of membrane internalized during endocytosis was studied quantitatively by a biochemical approach and by a morphometric analysis of autoradiographs in electron microscopy. Plasma membrane glycoconjugates, enzymatically labelled with radioactive galactose, were used as a membrane marker. In cells labelled at their surface either before or after the phagocytotic uptake of latex beads, subsequent endocytosis led to a redistribution of label between the plasma membrane and endosomal membranes until a steady-state was reached after about 1 h with 43% of the label on the plasma membrane. The steady-state resulted when all participating membranes carried the same surface density of label. During phagocytosis or pinocytosis the equivalent of the plasma membrane was internalized and recycled once every 20 min or 40 min, respectively. Compared to this rate a very rapid and complete mixing of membranes was observed between newly formed phagosomes and preexisting digestive vacuoles or between newly formed pinosomes and preexisting phagosomes. Due to this rapid mixing, the membranes enclosing undigestible latex beads remained fully linked to the shuttle of membrane to and from the cell surface.  相似文献   

16.
The plasma membrane ATPase activity of Dictyostelium amoebae increases ca 2.5 fold from non dividing stationary phase cells to synchronously growing cells. This increase in ATPase activity takes place during the three hours lag period that precede the cell division after diluting stationary cells into fresh medium and is prevented by cycloheximide. No differences in the Km for ATP or in the optimal pH for activity were observed in kinetic studies carried out with purified plasma membranes from stationary and proliferating cells.  相似文献   

17.
Plasma membrane proteins of the cellular slime mold Dictyostelium discoideum were characterized by two-dimensional polyacrylamide gel electrophoresis using a variety of labeling techniques and a microcomputer-based videodensitometer. Algorithms for the determination of molecular weights and isoelectric points were developed to aid in the comparison of polypeptides from different autoradiographs, Coomassie blue-stained gels, and Western blots. Cell homogenates were compared to plasma membranes isolated by a silica density perturbation technique and to cytoskeletons obtained by nonionic detergent extraction. Plasma membrane proteins were distinguished from subcellular contaminants by lactoperoxidase-catalyzed radioiodination, by selective labeling with N-hydroxysuccinimidyl-2-iminobiotin, and by quantitatively determining the enrichments of individual polypeptides from gels of plasma membrane proteins relative to their counterparts in gels of total cell lysate proteins. In contrast to defining plasma membrane purity by measuring a representative marker enzyme activity, the quantitative two-dimensional gel analysis strategy presented allowed for a rigorous evaluation of the enrichments of all detectable polypeptides in the subcellular fraction. Quantitative two-dimensional gel analysis avoided problems encountered with marker enzyme activation or inhibition during subcellular fractionation as enrichments were based solely on polypeptide amounts. It was also capable of identifying a wider spectrum of plasma membrane proteins than any of the labeling techniques employed in this study. A high resolution two-dimensional gel catalog was generated containing information about plasma membrane protein orientation in the bilayer, association with the cytoskeleton, phosphorylation state, glycosylation state, copy number, isoelectric point, and molecular weight.  相似文献   

18.
Summary Crude membranes from vegetative and aggregation competent cells of Dictyostelium discoideum Ax 2 were separated by a combination of differential and sucrose gradient centrifugation. A fraction mainly containing plasma membranes could be isolated. The high degree of purity was demonstrated by electron microscopy and by the presence of marker enzymes typical for the plasma membrane and the absence of enzymes characteristic for other subcellular compartments. Furthermore surface labelling with radioactive 1-fluoro-2,4-dinitrobenzene-14C and cAMP binding capacity were introduced as plasma membrane markers. In the pure plasma membrane fraction endogenous activities of D-mannosyl-, D-glucosyl- and N-Acetyl-D-glucosaminyl-transferases were present. The activities in plasma membranes of aggregation competent cells were up to thirty times higher than in membranes isolated from vegetative cells.Short Term Fellowship of Deutscher Akademischer Austauschdienst (DAAD).  相似文献   

19.
In previous equilibrium binding studies, Dictyostelium discoideum plasma membranes have been shown to bind actin and to recruit actin into filaments at the membrane surface. However, little is known about the kinetic pathway(s) through which actin assembles at these, or other, membranes. We have used actin fluorescently labeled with N-(1- pyrenyl)iodoacetamide to examine the kinetics of actin assembly in the presence of D. discoideum plasma membranes. We find that these membranes increase the rate of actin polymerization. The rate of membrane-mediated actin polymerization is linearly dependent on membrane protein concentrations up to 20 micrograms/ml. Nucleation (the association of activated actin monomers into oligomers) appears to be the primary step of polymerization that is accelerated. A sole effect on the initial salt-induced actin conformational change (activation) is ruled out because membranes accelerate the polymerization of pre- activated actin as well as actin activated in the presence of membranes. Elongation of preexisting filaments also is not the major step of polymerization facilitated by membranes since membranes stripped of all peripheral components, including actin, increase the rate of actin assembly to about the same extent as do membranes containing small amounts of endogenous actin. Acceleration of the nucleation step by membranes also is supported by an analysis of the dependence of polymerization lag time on actin concentration. The barbed ends of membrane-induced actin nuclei are not obstructed by the membranes because the barbed end blocking agent, cytochalasin D, reduces the rate of membrane-mediated actin nucleation. Similarly, the pointed ends of the nuclei are not blocked by membranes since the depolymerization rate of gelsolin-capped actin is unchanged in the presence of membranes. These results are consistent with previous observations of lateral interactions between membranes and actin filaments. These results also are consistent with two predictions from a model based on equilibrium binding studies; i.e., that plasma membranes should nucleate actin assembly and that membrane-bound actin nuclei should have both ends free (Schwartz, M. A., and E. J. Luna. 1988. J. Cell Biol. 107:201-209). Integral membrane proteins mediate the actin nucleation activity because activity is eliminated by heat denaturation, treatment with reducing agents, or proteolysis of membranes. Activity also is abolished by solubilization with octylglucoside but is reconstituted upon removal or dilution of the detergent. Ponticulin, the major actin-binding protein in plasma membranes, appears to be necessary for nucleation activity since activity is not reconstituted from detergent extracts depleted of ponticulin.  相似文献   

20.
'Patch-clamp' experiments in the cell-attached configuration have shown the existence of three distinct types of ion channels in the plasma membrane of Dictyostelium discoideum. Channels DI (slope conductance 11 pS) and DII (slope conductance 6 pS) promote an outward current at depolarizing voltages. A third ion channel (HI, slope conductance 3 pS) opens preferentially at hyperpolarization and promotes inward current flow. It is suggested that under physiological conditions current through the DI and DII channels is carried by K+, whereas Ca2+ may be the current carrier in the HI channel. The density of these ion channels in the membrane of D. discoideum is low: approx. 0.1/micron 2 for the DI and HI channel and 0.02/micron 2 for the DII channel. The gating properties of the ion channels appear to be complicated because openings are grouped into bursts of activity. The probability of the DI channel being in the open state increases with depolarization. The mean channel life-time is about 20 ms and voltage-independent. The burst duration increases with depolarization whereas the interburst time decreases. The minimal kinetic model accounting for the behaviour of the DI channel is a three-state model with two closed and one open state. A detailed analysis of the gating of the DII and the HI channel was prevented by their low rate of occurrence (DII) or fast inactivation (HI). The formation of a seal resistance greater than or equal to 1 G omega depends critically on the composition of the pipette solution. Examination of a series of monovalent and divalent cations as well as different organic and inorganic anions has shown that 'gigaseals' are formed only in the presence of at least 1 mM Ca2+ or Sr2+, whereas Ba2+, Mg2+ and monovalent cations (Li+, Na+, K+, Rb+, Cs+) do not support the formation of high seal resistances. Anions seem not to affect the seal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号