首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis of a correlation between a 10°–20°C lipid phase transition and the resealing process of human erythrocyte membrane has been investigated. The conditions required to reseal human erythrocyte ghosts have been studied by measuring the amount of fluorescein-labeled dextran (FD) that is trapped into the membrane. Temperature per se was sufficient to induce membrane resealing: (1) at 5 mM sodium phosphate, pH 7.8 (5P8), resealing began at 12°C; (2) at salt concentrations above 8 mM sodium phosphate, it occurred at lower temperature; and (3) in isotonic saline was detected just above 5°C. The removal of peripheral membrane proteins from unsealed membranes by chymotrypsin at 0°C in 5P8 was followed by membrane resealing. This seems to imply that the presence of proteins is necessary to maintain the membrane unsealed. Protein-induced lateral phase separation of lipids may be a reasonable mechanism for the observed phenomena. In fact, the permeability of phosphatidylserine-phosphatidylcholine mixed liposomes to FD is modified by lipid lateral phase separation induced by pH or poly-L-lysine. Electron spin resonance studies of membrane fluidity by a spin labeled stearic acid showed a fluidity break around 11°C, which may be due to a gel–liquid phase transition. Fluidity changes are abolished by chymotrypsin treatment. It is suggested that a lateral phase separation is responsible for the permeability of open ghosts to FD. Accordingly, disruption of phase separation apparently produces membrane reconstitution. In this respect peripheral proteins and particularly the spectrin-actin network, may play a major role in membrane resealing.  相似文献   

2.
The temperature dependence of fluorescence anisotropy, lifetime and differential tangent of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its polar trimethylammonium derivative (TMA-DPH) were investigated in cytoplasmic membranes ofBacillus subtilis. The fluorescence parameters were compared in the two types of membranes prepared from bacteria cultivated at 20 and 40°C. Steady-state anisotropy measurements showed that within a broad range of temperatures, membranes cultivated at 20°C exhibit significantly lower values than those prepared from cells cultivated at 40°C. The temperature dependence of lifetime and differential tangent measurements (differential polarized phase fluorimetry) were fully consistent with steady-state anisotropy data of both DPH and TMA-DPH. The low anisotropy values in the case of TMA-DPH could be explained by a shorter lifetime and higher temperature-induced decrease as compared with DPH. Surprisingly, the temperature dependence of rotational rateR calculated according to the model of hindered rotations (Lakowicz 1983) gave misleading results. When increasing the temperature from 5 to 25°C, a marked drop of rotational relaxation rate was observed. The minimumR values were measured between 25 and 30°C and further increase of temperature (up to 60°C) was reflected as increase of theR values. Therefore, a new model of “heterogeneous rotations” was developed. This model assumes that even at low temperatures (approaching 0°C) where the differential tangent reaches zero, a fraction of fast rotating molecules exists. The ratio between fast and slowly rotating molecules may be expressed by this model, the newly calculated rotational rates are fully consistent with anisotropy, lifetime and differential tangent measurements and represent the monotonically increasing function of temperature.  相似文献   

3.
About 30% of the phosphatidylglycerol in oleic acid-enriched Acholeplasma laidlawii membranes are not hydrolyzed at temperatures below 10 °C by phospholipase A2 from porcine pancreas. Removal of 53% of the membrane proteins by proteolysis did not reduce the size of this inaccessible phosphatidylglycerol pool. However, modification of the membrane proteins with 2,4,6-trinitrobenzenesulfonic acid or glutaraldehyde did make an additional 70% of this protected pool of phosphatidylglycerol accessible to phospholipase A2. Complete hydrolysis of phosphatidylglycerol at low incubation temperatures was achieved only after heat treatment of the membranes which resulted in an extensive aggregation of intrinsic membrane proteins as visualized by freeze-etch electron microscopy. Phospholipase A2 from bee venom was more effective in hydrolyzing phosphatidylglycerol at low temperature than the pancreatic enzyme. These results show that the inaccessibility of phosphatidylglycerol is not due to resealing of isolated membranes, the presence of a crystalline phase in the membrane lipids, or a shielding effect of surface proteins. The protection against hydrolysis may be due to an interaction of phosphatidylglycerol with intrinsic membrane proteins which is stabilized at low temperatures. Increasing the temperature favors the exchange of protein-bound phosphatidylglycerol with other membrane lipids resulting in complete hydrolysis.  相似文献   

4.
The temperature requirements for growth and upper temperature tolerance were determined in 16 macroalgal species collected on Disko Island (Greenland). The upper survival temperatures were examined in 1°C steps, and growth measured at 5°C intervals between 0 and 20°C using a refined method, where the fresh weight was determined weekly or fortnightly over a period of 5 or 6 weeks. To express temperature-growth responses, growth rates of temperature-acclimated plants were taken. Two groups with different temperature requirements were identified: (1) A stenothermal group includingAcrosiphonia arcta, Acrosiphonia sonderi, Urospora penicilliformis, Devaleraea ramentacea, Desmarestia aculeata, Pilayella littoralis, growing between 0 and (10 to) 15 (or 20)°C with optima between 0 and 10°C. The upper survival temperatures in these species and inChromastrum secundatum, Chromastrum virgatulum, Chordaria flagelliformis were between 17 and 23°C (duration of experiment: 2 weeks). (2) A eurythermal group includingEnteromorpha clathrata, Enteromorpha intestinalis andPolysiphonia urceolata growing between 0 and 20°C with growth optima at 10 or 15°C. The upper survival temperatures in these species and inChaetomorpha tortuosa, Bangia atropurpurea andEudesme virescens were between 24 and 31°C. These algal species showed little adaptation to the Arctic temperatures. In contrast, algae from the first group exhibited a relatively high adaptation to low temperatures — approaching the low temperature requirements of Antarctic algae. The results are discussed in relation to the geographic distribution of individual species.  相似文献   

5.
Temperature-mediated plasticity in life history traits strongly affects the capability of ectotherms to cope with changing environmental temperatures. We hypothesised that temperature-mediated reaction norms of ectotherms are constrained by the availability of essential dietary lipids, i.e. polyunsaturated fatty acids (PUFA) and sterols, as these lipids are involved in the homeoviscous adaptation of biological membranes to changing temperatures. A life history experiment was conducted in which the freshwater herbivore Daphnia magna was raised at four different temperatures (10, 15, 20, 25°C) with food sources differing in their PUFA and sterol composition. Somatic growth rates increased significantly with increasing temperature, but differences among food sources were obtained only at 10°C at which animals grew better on PUFA-rich diets than on PUFA-deficient diets. PUFA-rich food sources resulted in significantly higher population growth rates at 10°C than PUFA-deficient food, and the optimum temperature for offspring production was clearly shifted towards colder temperatures with an increased availability of dietary PUFA. Supplementation of PUFA-deficient food with single PUFA enabled the production of viable offspring and significantly increased population growth rates at 10°C, indicating that dietary PUFA are crucial for the acclimation to cold temperatures. In contrast, cumulative numbers of viable offspring increased significantly upon cholesterol supplementation at 25°C and the optimum temperature for offspring production was shifted towards warmer temperatures, implying that sterol requirements increase with temperature. In conclusion, essential dietary lipids significantly affect temperature-mediated reaction norms of ectotherms and thus temperature-mediated plasticity in life history traits is subject to strong food quality constraints.  相似文献   

6.
The resealing process of lipid bilayer membranes after reversible electrical breakdown was investigated using two voltage pulses switched on together. Electrical breakdown of the membranes was induced with a voltage pulse of high intensity and short duration. The time course of the change in membrane conductance after the application of the high (short) voltage pulse was measured with a longer voltage pulse of low amplitude. The decrease in membrane conductance during the resealing process could be fitted to a single exponential curve with a time constant of 10-2 μs in the temperature range between 2 and 20°C. The activation energy for this exponential decay process was found to be about 50 kJ/mol, which might indicate a diffusion process. Above 25°C the resealing process is controlled by two exponential processes.The data obtained for the time course of the resealing process can be explained in terms of pore formation in the membranes in response to the high electrical field strength. A radius of about 4 nm is calculated for the initial pore size. From the assumed exponential change of the pore area with progressive resealing time a diffusion constant of 10?8 cm2/s for lateral lipid diffusion can be estimated.  相似文献   

7.
Washed human erythrocyte membranes can recover impermeability to macromolecules upon warming in solutions of sufficient ionic strength. This ability is rapidly lost from most ghost preparations in dilute salt solution at temperatures of 15°C or higher. Divalent cations both reseal ghosts in the absence of high ionic strength and prevent loss of resealing ability. The effective concentrations are 40 μM for Ca2+ and 200 μM for Mg2+. The loss of resealing ability is associated with the release of spectrin polypeptides from the inner surface of the membrane. In ghost preparations that have not become irreversibly leaky, or in the presence of Ca2+, loss of spectrin does not occur. These results suggest that an intact spectrin network is required for resealing to macromolecules, and divalent cations stabilize this network. In light of this information, the effect of temperature on resealing kinetics is described.  相似文献   

8.
A temperature-sensitive mouse fibroblast cell line was used to examine the relationship between hexose sugar uptake rates and the control of cell growth. The cell line used (ts-H6-15) is a derivative of SV-3T3 cells, exhibiting a transformed phenotype at 32°C and a normal phenotype at 39°C. For cells actively growing at either temperature, a marked decrease in the rate of 3-0-methyl-D-glucose (3-0-MeG) transport is observed as cell population density increases. At all cell population densities tested, 3-0-MeG transport rates (at a common assay temperature) were greater in H6-15 cells grown at 32°C than at 39°C, with the enhancement being maximal at the lowest cell densities. The effect of low serum-arrest on H6-15 cells revealed that cells growing at 39°C arrest in G1, while cells at 32°C stop more randomly throughout their cycle. Under conditions of low serum-arrest the rate of 3-0-MeG transport remained as high as in actively growing cells at both 32°C and 39°C. However, 2-deoxyglucose uptake rates were growth state-dependent at 39°C, indicating perhaps metabolic as well as membrane-level control of sugar accumulation. These results further demonstrate that rates of hexose sugar transport by themselves are not always absolutely correlated with rates of cell proliferation and, thus, may not be reliable predictors of cell growth potential.  相似文献   

9.
The structural and functional specificity of the chitinolytic microbial complex changes dramatically depending on the incubation temperature of soil microcosms. It was shown that the highest rates of chitin degradation occurred in desert soils at high temperatures (50°C); in the moderate and northern zones, these rates peaked at lower temperatures (5°C). The role of prokaryotes as the main chitin degraders in soils incubated at high temperatures, with fungi more actively participating in chitin decomposition at low temperatures, was shown for the first time. Fluorescent in situ hybridization (FISH) revealed the predominance of actinomycetes in the metabolically active chitinolytic prokaryotic complex of desert soils (high temperatures); in the soils of the northern latitudes (low temperatures), proteobacteria prevailed. The relationship between the taxonomic position of the dominant members of the chitinolytic complex of soil microorganisms, isolated in pure cultures with the dominant phylogenetic groups and the sequence types obtained by using molecular biological techniques (FISH) was revealed.  相似文献   

10.
In roach Rutilus rutilus growth ceases below a temperature threshold of 12° C. This cessation of growth is accompanied by a reduction in feeding. Do roach decrease feeding in the cold because of reduced energy demand, caused by the decelerating effect of low temperature on metabolism and growth, or is feeding directly limited by low temperatures, leading to reduced growth rates? It was found that at low temperatures the intake and digestion of food may be limited by reduced activities of digestive enzymes. Trypsin, amylase and γ‐glutamyl transferase showed a negative compensation with respect to temperature, resulting in very low activities at acclimation temperatures of ≤12° C. Trypsin activity, falling from 400·5 ± 131·2 U g?1 fresh mass of the gut at 27° C to 12·5 U g?1 fresh mass at 4° C, displayed the strongest linear correlation with growth rates, suggesting that trypsin activities may set a limit to growth in the low temperature range. If protein digestion is limiting at low temperatures, this should be reflected in reduced concentrations of amino acid in the white muscle. The size of the total amino acid pool was not affected by temperature acclimation and ranged between 19·2 ± 6·2 and 25·2 ± 3·6 µmol g?1 fresh mass of the white muscle. A decrease, however, was found of several amino acids, mainly of threonine and glutamine, in the low temperature range. Low concentrations of the essential amino acid threonine (0·14 ± 0·03 µmol g?1 fresh mass at 12° C and 0·12 ± 0·05 µmol g?1 fresh mass at 4° C) were probably due to nutritional or digestional limitations and may therefore have resulted from reduced trypsin activity in the cold. The non‐essential amino acid glutamine, however, can be endogenously synthesized and its low level observed at 4° C (0·16 ± 0·09 µmol g?1 fresh mass) was not necessarily a result of low trypsin activities. It is more likely that low temperatures impair glutamine synthesis. The possibility that glutamine concentrations may be down regulated under conditions when anabolic processes are not advantageous is discussed.  相似文献   

11.
Freely diffusable lipid spin labels in bovine rod outer segment disc membranes display an apparent two-component ESR spectrum. One component is markedly more immobilized than that found in fluid lipid bilayers, and is attributed to lipid interacting directly with rhodopsin. For the 14-doxyl stearic acid spin label this more immobilized component has an outer splitting of 59 G at 0°C, with a considerable temperature dependence, the effective outer splitting decreasing to 54 G at 24°C. Spin label lipid chains covalently attached to rhodopsin can also display a two-component spectrum in rod outer segment membranes. In unbleached, non-delipidated membranes the 16-doxyl stearoyl maleimide label shows an immobilized component which has an outer splitting of 59 G at 0°C and a considerable temperature dependence. This component which is not resolved at high temperatures (24–35°C), is attributed to the lipid chains interacting directly with the monomeric protein, as with the diffusable labels. In contrast, in rod outer segment membranes which have been either delipidated or extensively bleached, a strongly immobilized component is observed with the 16-doxyl maleimide label at all temperatures. This immobilized component has an outer splitting of 62–64 G at 0°C, with very little temperature dependence (61–62 G at 35°C), and is attributed to protein aggregation.  相似文献   

12.
The temperature dependence of capacitation in bat sperm (Myotis lucifugus lucifugus) was studied by monitoring fertilizations rates of zona-free hamster ova at different temperatures. Spermatozoa were cultured in BWW medium at temperatures 4°C, 24°C, 32°C, 42°C, and 55°C from 0–24 hr. Activation of sperm could be determined visually due to the change in movement seen through light microscopy. Activation was later confirmed by higher rates of fertilization. Preincubation of the bat sperm was found to have a direct effect on the success of penetration of the zona-free hamster ova. Holding bat spermatozoa at low temperature for long intervals allowed them to remain motile but unable to fertilize. Sperm are not irreversibly damaged, however, and activation, when the temperature is increased to 32°C, is faster than when sperm are intitially put at 32°C, resulting in good fertilization rates.  相似文献   

13.
Mats of coenocytic “snow molds” are commonly observed covering the soil and litter of alpine and subalpine areas immediately following snow melt. Here, we describe the phylogenetic placement, growth rates, and metabolic potential of cold-adapted fungi from under-snow mats in the subalpine forests of Colorado. SSU rDNA sequencing revealed that these fungi belong to the zygomycete orders Mucorales and Mortierellales. All of the isolates could grow at temperatures observed under the snow at our sites (0°C and −2°C) but were unable to grow at temperatures above 25°C and were unable to grow anaerobically. Growth rates for these fungi were very high at −2°C, approximately an order of magnitude faster than previously studied cold-tolerant fungi from Antarctic soils. Given the rapid aerobic growth of these fungi at low temperatures, we propose that they are uniquely adapted to take advantage of the flush of nutrient that occurs at the soil–snow interface beneath late winter snow packs. In addition, extracellular enzyme production was relatively high for the Mucorales, but quite low for the Mortierellales, perhaps indicating some niche separation between these fungi beneath the late winter snow pack.  相似文献   

14.
Filtration was studied in two Arctic clams, Hiatella arctica and Mya sp., collected in Young Sound, Northeast Greenland. Clearance rates were determined as a function of ambient temperature and algal cell concentration, using the clearance method and feeding with a unicellular flagellate. For both species, clearance rates increased with increasing temperature from <у up to 4-8°C. At higher temperatures, filtration ceased and the clams closed their valves. Clearance rates were also determined in temperate specimens of H. arctica collected on the west coast of Sweden. For these specimens, clearance rates increased with increasing temperature from 0 to 18-20°C. When weight-specific clearance rates were compared between the two populations and between species, there were no differences at 1°C. Clearance rates in Arctic H. arctica were maximal at algal cell concentrations corresponding to 2.5-8 µg chlorophyll a l-1. Temperature compensation in Arctic bivalves is discussed and it is concluded that adaptations to constant low temperatures consist of a lower minimum temperature, for active filtration. Low clearance rates due to low temperatures did not seem to limit growth, under the prevailing conditions in Young Sound.  相似文献   

15.
Summary Male and femalePsammodromus hispanicus from southern Europe were acclimated to four seasonal conditions of photoperiod and night time temperature. During the dark period, the lizards' body temperatures fell to ambient air temperature but during the light period the lizards were allowed to thermoregulate behaviourally and at such times the lizards' mean body temperature varied from 29.0°C to 32.6°C. The resting metabolic rate of these lizards was measured in 5°C steps from 5°C to 30°C or 35°C. Sexual condition had little effect on resting metabolic rate, but at low temperatures lizards acclimated to winter or spring seasonal conditions had lower resting metabolic rates than those acclimated to summer or autumn conditions. At temperatures above 20°C seasonal acclimation had no effect on resting metabolic rate. It is considered that the reduction in low temperature metabolic rate in spring and winter is induced by low night time temperatures and serves to conserve energy during those seasons when lizards must spend long periods at low temperature without being able to feed.  相似文献   

16.
Maritime Antarctic freshwater habitats are amongst the fastest changing environments on Earth. Temperatures have risen around 1°C and ice cover has dramatically decreased in 15 years. Few animal species inhabit these sites, but the fairy shrimp Branchinecta gaini typifies those that do. This species survives up to 25°C daily temperature fluctuations in summer and passes winter as eggs at temperatures down to -25°C. Its annual temperature envelope is, therefore around 50°C. This is typical of Antarctic terrestrial species, which exhibit great physiological flexibility in coping with temperature fluctuations. The rapidly changing conditions in the Maritime Antarctic are enhancing fitness in these species by increasing the time available for feeding, growth and reproduction, as well as increasing productivity in lakes. The future problem these animals face is via displacement by alien species from lower latitudes. Such invasions are now well documented from sub-Antarctic sites. In contrast the marine Antarctic environment has very stable temperatures. However, seasonality is intense with very short summers and long winter periods of low to no algal productivity. Marine animals grow slowly, have long generation times, low metabolic rates and low levels of activity. They also die at temperatures between +5°C and +10°C. Failure of oxygen supply mechanisms and loss of aerobic scope defines upper temperature limits. As temperature rises, their ability to perform work declines rapidly before lethal limits are reached, such that 50% of populations of clams and limpets cannot perform essential activities at 2–3°C, and all scallops are incapable of swimming at 2°C. Currently there is little evidence of temperature change in Antarctic marine sites. Models predict average global sea temperatures will rise by around 2°C by 2100. Such a rise would take many Antarctic marine animals beyond their survival limits. Animals have 3 mechanisms for coping with change: they can 1) use physiological flexibility, 2) evolve new adaptations, 3) migrate to better sites. Antarctic marine species have poor physiological scopes, long generation times and live on a continent whose coastline covers fewer degrees of latitude than all others. On all 3 counts Antarctic marine species have poorer prospects than most large faunal groups elsewhere.  相似文献   

17.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

18.
Mitochondrial, microsomal and pellicular membranes were isolated from Tetrahymena cells grown at 39°C or 15°C, and phospholipids, in turn, were separated from total lipids extracted from these membranes. The effect of growth temperature on their solid-to-fluid phase transition temperature was examined by wide-angle X-ray diffraction. The transition temperatures of phospholipids from mitochondria, microsomes and pellicles were 21, 19 and 26°C for cells grown at 39°C and ?8, ?3 and 6°C for cells grown at 15°C, respectively. All phospholipids were found in a completely fluid state at these growth temperatures. From a comparison between the phospholipids and total lipids from pellicles of cells grown at 39°C, a triterpenoid alcohol, tetrahymanol, caused the transition temperature to increase. The alignment of tetrahymanol in membranes was examined with pellicle's total lipid oriented in a sample holder.  相似文献   

19.
We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the chirally organized macrodomains containing the main chlorophyll a/b light-harvesting complexes. The mutation also brings about changes in the overall chlorophyll fluorescence lifetimes, measured in whole leaves as well as in isolated thylakoids. As shown by time-resolved measurements, using the lipophylic fluorescence probe Merocyanine 540 (MC540), the altered lipid composition affects the packing of lipids in the thylakoid membranes but, as revealed by flash-induced electrochromic absorbance changes, the membranes retain their ability for energization. Thermal stability measurements revealed more significant differences. The disassembly of the chiral macrodomains around 55°C, the thermal destabilization of photosystem I complex at 61°C as detected by green gel electrophoresis, as well as the sharp drop in the overall chlorophyll fluorescence lifetime above 45°C (values for the wild type—WT) occur at 4–7°C lower temperatures in dgd1. Similar differences are revealed in the temperature dependence of the lipid packing and the membrane permeability: at elevated temperatures MC540 appears to be extruded from the dgd1 membrane bilayer around 35°C, whereas in WT, it remains lipid-bound up to 45°C and dgd1 and WT membranes become leaky around 35 and 45°C, respectively. It is concluded that DGDG plays important roles in the overall organization of thylakoid membranes especially at elevated temperatures.  相似文献   

20.
Biofilms growing on ice and benthic mats are among the most conspicuous biological communities in Antarctic landscapes and harbour a high diversity of organisms. These communities are consortia that make important contributions to carbon and nitrogen input in non-marine Antarctic ecosystems. Here, we study the effect of increasing temperatures on the carbon and nitrogen metabolism of two benthic communities on Byers Peninsula (Livingston Island, Maritime Antarctica): a biofilm dominated by green algae growing on seasonal ice, and a land-based microbial mat composed mainly of cyanobacteria. Inorganic carbon photoassimilation, urea and nitrate uptake and N2-fixation (acetylene reduction activity) rates were determined in situ in parallel at five different temperatures (0, 5, 10, 15, 25°C) using thermostatic baths. The results for the cyanobacterial mat showed that photosynthesis and N2-fixation responded positively to increased temperatures, but urea and NO3 uptake rates did not show a significant variation related to temperature. This microbial mat exhibits relatively low activity at 0°C whereas at higher temperatures (up to 15°C), N2-fixation rate increased significantly. Similarly, the maximum photosynthetic activity increased in parallel with temperature and showed no saturation up to 25°C. In contrast, the ice biofilm displayed higher photosynthetic activity at 0°C than at the other temperatures assayed, and it showed elevated photoinhibition at warmer temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号