首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of alcohols on the formation of leukotrienes, 5-HETE and prostaglandin D2 in mastocytoma cells and human neutrophils were studied. In murine mastocytoma cells, alcohols appear to have at least two different effects on the production of these arachidonic acid metabolites. At low levels of cellular arachidonic acid achieved after stimulation with calcium ionophore A23187 or addition of low levels of exogenous arachidonic acid, alcohols appear to have a general inhibitory effect on the production of lipoxygenase metabolites. In the presence of higher concentrations of cellular arachidonic acid, ethanol and methanol stimulated the production of lipoxygenase metabolites, but had no large stimulatory effect on the cyclo-oxygenase metabolite, prostaglandin D2. Under these conditions, n-propanol and t-butanol have inhibitory effects on leukotriene production. Human neutrophils are less sensitive to ethanol than mastocytoma cells, but stimulatory effects were still found at high ethanol concentrations (220-430 mM).  相似文献   

2.
The present studies were undertaken to examine the hypothesis that ethanol could effect cellular biosynthesis in the murine mastocytoma cell of prostaglandins and leukotrienes, oxidative metabolites of arachidonic acid, at concentrations that could be encountered in vivo as well as during in vitro experiments. The effects of ethanol which encompass these concentration ranges (200–1000 mg%) can be summarized as follows: first in the absence of exogenous arachidonic acid, ethanol caused a dose dependent decrease in the production of leukotrienes which was statistically significant at 200 mg%. At 1000 mg%, ethanol caused a 20–50% decrease in leukotrienes and a 21% decrease in the amount of prostaglandins D2 (PGD2) formed in these cells. Secondly, when cells were incubated with exogenous arachidonic acid (14 μg/ml), large increases in both PGD2 and leukotrienes occurred. Under these conditions, ethanol caused a further increase in the amount of leukotrienes and a small increase in the amount of PGD2 formed. This stimulatory effect was specific for ethanol since neither t-butanol nor n-butanol caused the enhanced production of leukotrienes with exogenous arachidonic acid. Thus, these experiments sugsests that ethanol affects metabolsim of arachidonic acid at reasonably low doses (200–400 mg%) of ethanol in a manner dependent on the free arachidonic acid in the tissue. Also, in vitro experiments in which ethanol is used as a solvent for arachidonic acid could be greatly affected by high levels of ethanol (500–1000 mg%) which are frequently utilized.  相似文献   

3.
Rat neutrophils isolated from three-hour carrageenan pleural exudates actively metabolize arachidonic acid into three major metabolites, HHT, 11-HETE and 15-HETE. However, in the presence of the calcium ionophore, A23187, or the non-ionic detergent, BRIJ 56, these cells also produce 5-HETE and LTB. The production of these lipoxygenase products is calcium dependent. While non-steroidal anti-inflammatory drugs do not affect 5-HETE or LTB production, BW 755C and ETYA inhibit formation of these metabolites from exogenously added arachidonic acid.  相似文献   

4.
The present studies were undertaken to examine the hypothesis that ethanol could affect cellular biosynthesis in the murine mastocytoma cell of prostaglandins and leukotrienes, oxidative metabolites of arachidonic acid, at concentrations that could be encountered in vivo as well as during in vitro experiments. The effects of ethanol which encompass these concentration ranges (200-1000 mg%) can be summarized as follows: first in the absence of exogenous arachidonic acid, ethanol caused a dose dependent decrease in the production of leukotrienes which was statistically significant at 200 mg%. At 1000 mg%, ethanol caused a 20-50% decrease in leukotrienes and a 21% decrease in the amount of prostaglandin D2 (PGD2) formed in these cells. Secondly, when cells were incubated with exogenous arachidonic acid (14 micrograms/ml), large increases in both PGD2 and leukotrienes occurred. Under these conditions, ethanol caused a further increase in the amount of leukotrienes and a small increase in the amount of PGD2 formed. This stimulatory effect was specific for ethanol since neither t-butanol nor n-butanol caused the enhanced production of leukotrienes with exogenous arachidonic acid. Thus, these experiments suggest that ethanol affects metabolism of arachidonic acid at reasonably low doses (200-400 mg%) of ethanol in a manner dependent on the free arachidonic acid in the tissue. Also, in vitro experiments in which ethanol is used as a solvent for arachidonic acid could be greatly affected by high levels of ethanol (500-1000 mg%) which are frequently utilized.  相似文献   

5.
Effects of leucine and related compounds on protein synthesis were studied in RLC-16 hepatocytes. The incorporation of [3H] tyrosine into cellular protein was measured as an indexof protein synthesis. In leucine-depleted RLC-16 cells, L-leucineand its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipase A2 and C canceled stimulatory actions of L-leucine and KIC on protein synthesis, suggesting a possible involvement of either arachidonic acid metabolism by phospholipase A2, cyclooxygenase or lipoxygenase, or phosphatidylinositol degradation by phospholipase C in the stimulatory actions of L-leucine and KIC.Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of protein kinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in RLC-16 cells via activation of phospholipase C and production of diacylglycerol and inositol triphosphate from phosphatidylinositol, which in turn activate protein kinase C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Cytotoxic T lymphocyte (CTL)-mediated lysis of target cells was inhibited by 5,8,11,14-eicosatetraynoic acid (ETYA) and other inhibitors of the lipoxygenase pathway at concentrations that inhibited arachidonic acid metabolism in mixed lymphocyte cultures. Inhibition was reversible and selective for the "lethal hit" stage in the CTL-target interaction. Studies to define CTL-specific arachidonic acid metabolites demonstrated that cloned CTL populations have little or no capacity to metabolize arachidonic acid. Therefore, inhibitor actions appear to be independent of the effects on CTL arachidonic acid metabolism. Alternative explanations for inhibitory effects are discussed.  相似文献   

7.
The effects of treatment with the osteotropic steroids 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), 17β-estradiol, or dexamethasone on [1-14C]arachidonic acid (AA) uptake and distribution into glycerophospholipid classes by normal adult human osteoblast-like (hOB) cells were investigated. Total uptake of [1-14C]AA was decreased in cells treated with dexamethasone when assayed after a 24-, 48-, or 96-h exposure to the hormone. Specific radiolabel incorporation into phosphatidylcholine was reduced by a 48-h treatment with dexamethasone with a concurrent increase in the radiolabeling of phosphatidylethanolamine. However, these changes were transient, and by 96 h of dexamethasone treatment the distribution of the radiolabeled fatty acid had reequilibrated to resemble the pattern found for vehicle treated samples. Total uptake of [1-14C]AA was diminished by 96-h treatment with 1,25(OH)2D3 (79 ± 3% of control, P < 0.01); at that time point, a significant decrease in the proportional radiolabeling of the phosphatidylinositol pool was identified (92 ± 2% of control, P < 0.05). The 1,25(OH)2D3-dependent decrease in total uptake and in phosphatidylinositol incorporation of [1-14C]AA were found to be hormone dose dependent. Treatment with 24,25(OH)2D3 was without effect on either total [1-14C]AA uptake or the specific [1-14C]AA radiolabeling of the phosphatidylinositol pool. 1,25(OH)2D3 treatment decreased hOB cell uptake of [1-14C]oleic acid and decreased its proportional incorporation into the phosphatidylinositol pool. Gas chromatographic analyses revealed no 1,25(OH)2D3-dependent effects on total phosphatidylinositol lipid mass or on the mole percent of arachidonic acid within the phosphatidylinositol pool, leaving the mechanism of the effects of the secosteroid on hOB cell AA metabolism unexplained. 17β-Estradiol had no effects on the parameters of AA metabolism measured. As a consequence of their modulation of arachidonic acid uptake and its distribution into hOB cellular phospholipids, steroids might alter the biological effects of other hormones whose actions include the stimulated production of bioactive AA metabolites, such as prostaglandins or the various lipoxygenase products.  相似文献   

8.
A detailed examination of the effects of exogenous arachidonate on cation metabolism in rabbit neutrophils was undertaken. Arachidonic acid stimulates the movement of 45Ca into and out of the neutrophils with a net result, in the presence of extracellular calcium, of increasing the steady-state level of 45Ca. Arachidonate also increases the uptake of 22Na. These effects of arachidonate are specific to these cations, concentration-dependent, and sensitive to lipoxygenase inhibitors. At the concentrations used in this study arachidonate does not influence the permeability of human erythrocytes to 45Ca. Furthermore, both arachidonic acid and F-Met-Leu-Phe release calcium from a previously unexchangeable intracellular pool and the effect of the two stimuli are not additive. Arachidonic acid-dependent, but not F-Met-Leu-Phe-dependent, calcium release is sensitive to lipoxygenase inhibitors. These two stimuli thus appear to release is sensitive to lipoxygenase inhibitors. These two stimuli thus appear to release calcium from the same pool(s) by separate mechanisms. The results summarized above are consistent with the hypothesis that one or more arachidonate metabolites are involved in the mechanism underlying the chemotactic factor induced permeability changes in rabbit neutrophils.  相似文献   

9.
It is increasingly recognized that macrophages play a crucial role in the development of chronic inflammatory states such as alcoholic liver disease. These cells can metabolize free arachidonic acid in the absence of a discernible trigger. The present study was undertaken to examine the short-term effects of ethanol on the generation of these exogenous arachidonate-derived extracellular mediators. Ethanol caused a dose-dependent decrease in the production of both cyclooxygenase and lipoxygenase metabolites. Similar effects were observed on the esterification of exogenous arachidonate into cellular lipids. To characterize further the effects of ethanol on exogenous arachidonic acid metabolism, we studied the short-term responses displayed by macrophages challenged with another soluble stimulus; the tumor-promoting agent phorbol myristate acetate. We observed an inhibition by ethanol of the superoxide anion response triggered by phorbol myristate acetate similar to that observed for exogenous arachidonate oxygenation. Our results show that ethanol can inhibit these soluble stimuli-elicited responses, possibly through its disorganizing effect on plasma membrane.  相似文献   

10.
We investigated the stimulation of early cellular events resulting from the interaction of the growth factor basic FGF (bFGF) and of the growth inhibitor transforming growth factor beta-type 1 (TGFβ1), with their specific receptors on bovine endothelial cells. At mitogenic concentrations, bFGF stimulated the rapid release of arachidonic acid and its metabolites from (3H)-arachidonic acid labeled cells. When arachidonic acid metabolism was stimulated by addition of the calcium ionophore A23187, the effect of bFGF was amplified. Nordihydroguaïaretic acid, an inhibitor of the lipoxygenase pathway of arachidonic acid metabolism, decreased the mitogenic effect of bFGF, whereas indomethacin, an inhibitor of the cyclooxygenase pathway, was ineffective. These findings suggest that metabolism of arachidonic acid to lipoxygenase products may be necessary for the mitogenic effect of bFGF. Basic FGF did not stimulate the production of inositol phosphates from cells labelled with myo-(2-3H)-inositol nor did it induce calcium mobilization, as measured by fura-2 fluorescence, indicating that bFGF does not activate phosphoinositide specific phospholipase C in endothelial cells, but rather, that bFGF-induced arachidonic acid metabolism is mediated by another phospholipase. TGFβ1, which inhibits basal and bFGF-induced endothelial cell growth, had no effect on arachidonic acid matabolism and inositol phosphate formation and did not prevent bFGF-induced arachidonic acid metabolism. These results suggest that the inhibitory action of TGFβ1 on endothelial cell growth occurs through different mechanisms.  相似文献   

11.
The migration of human T lymphocytes, assessed in modified Boyden chambers, was chemokinetically stimulated by arachidonic acid in a dose-related manner that achieved a peak level of 127 ± 34% enhancement (mean ± SD) at 8 μM arachidonic acid. The chemokinetic effect was dependent on the metabolism of the arachidonic acid by the T lymphocytes as derivatives of arachidonic acid that do not serve as prostaglandin and thromboxane precursors were without effect, while the cyclo-oxygenase inhibitors indomethacin (ID50 = 10 μM) and 5,8,11,14-eicosatetraynoic acid (ETYA) (ID50 = 20 μM) suppressed the stimulation of migration by arachidonic acid. The cyclo-oxygenase product 12-l-hydroxy-5,8,10-heptadecatrienoic acid (HHT) reproduced part of the chemokinetic effect of arachidonic acid, but the lipoxygenase product 12-l-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE) as well as PGE2, PGF, and thromboxane B2 had no stimulatory activity. The ability of ETYA, but not indomethacin, to suppress the migration of unstimulated T lymphocytes suggested that a lipoxygenase metabolite of endogenous arachidonic acid contributes to the maintenance of their normal levels of spontaneous migration.  相似文献   

12.
Rat neutrophils isolated from four-hour reverse passive Arthus reaction pleural exudates actively metabolize arachidonic acid. Production of 11-hydroxy- and 15-hydroxy-icosatetraenoic acid and 12-hydroxy-heptadecatrienoic acid is inhibited by indomethacin, benoxaprofen, BW 755C, piroxicam, ibuprofen, timegadine, and naproxen, suggesting that production of these arachidonic acid metabolites occurs at similar enzymic active sites. In addition, in the presence of the calcium inophore A23187 or the non-ionic detergent, BRIJ 56, rat neutrophils also produce the lipoxygenase products 5-hydroxy-icosatetraenoic acid and leukotriene B. The production of these metabolites is calcium dependent. Moreover, the calcium ionophore A23187 and BRIJ 56 synergistically act to augment the metabolism of exogenously added arachidonic acid via lipoxygenase. The formation of these metabolites is inhibited by BW 755C, benoxaprofen and timegadine but not by other non-steroidal anti-inflammatory drugs tested. In fact, at doses which inhibit cyclo-oxygenase activity, indomethacin, naproxen, and ibuprofen stimulate arachidonic acid metabolism via lipoxygenase.  相似文献   

13.
Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [3H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A2 and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C.  相似文献   

14.
A cloned murine mast cell line designated MC9 expresses a 5-lipoxygenase activity when stimulated with the ionophore A23187. Upon addition of 0.5 uM ionophore, MC9 cells produce 270 ± 43 pmoles 5-HETE, 74 ± 40 pmoles 5,12 di HETEs and 65 ± 31 pmoles LTC4/106 cells from 37 uM exogenously added [1-14C]arachidonic acid in two minutes. 5-HETE and 5,12-di HETES, including LTB4 were identified by GC/MS whereas LTC4 was confirmed by HPLC mobility, bio-assay, RIA and enzymatic transformation. The principal cyclooxygenase products were PGD2 and TxB2 (8.5 ± 2.4 and 5.4 ± 1.2 pmoles/106 cells respectively). Prostanoids were identified by comigration with authentic standards on two-dimensional thin layer chromatograms. Production of arachidonic acid lipoxygenase metabolites stimulated with ionophore proved relatively insensitive to removal of extracellular Ca+2 and chelation by EGTA. In addition, MC9 5-lipoxygenase required only low micromolar amounts of exogenous arachidonic acid for maximal activity. Whereas production of arachidonic acid metabolites lasted only two to five minutes, histamine release stimulated with ionophore was not initiated until 5 minutes (12 ± 3% cellular histamine) and continued for 30 minutes (37 ± 7% cellular histamine). Although these cells metabolize arachidonic acid differently from the classic peritoneal-derived mast cell, they resemble subpopulations found in certain tissues (such as mucosa) and should be useful in understanding the biochemistry of mast cell mediator release.  相似文献   

15.
Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation. Some of these factors are metabolites of arachidonic acid, most notably prostacyclin. However, many of the endothelial metabolites of arachidonic acid have not been positively identified. The purpose of these studies is to identify the arachidonic acid metabolites synthesized by bovine coronary endothelial cells. Cultured bovine coronary artery endothelial cells were incubated with [ 14C]arachidonic acid. The incubation media was extracted and the radioactive metabolites resolved by a combination of reverse phase- and normal phase-high pressure liquid chromatography (HPLC). The cells synthesized 6-keto prostaglandin (PG)F, PGE2, 12-hydroxyheptadecatrienoic acid (HHT), 12-, 15-, and 11- hydroxyeicosatetraenoic acids (HETE), and 14,15-, 11,12-, 8,9-, and 5,6-epoxyeicosatrienoic acids (EET). Several of the HETEs were further analyzed by chiral-phase HPLC. The cells synthesized predominately 12(S)-, 15(S)-, and 11(R)-HETE. The synthesis of the S optical isomers of 12- and 15-HETE suggested that the 12- and 15-lipoxygenases were present in these cells. 11(R)-HETE is probably derived from cyclooxygenase. They also synthesized smaller amounts of 9-, 8- and 5-HETEs. The structures of the HETEs and EETs were confirmed by mass spectrometry. The release of 6-keto PGF and 15-HETE was measured by specific radioimmunoassays. Melittin, thrombin, arachidonic acid and A23187 stimulated the release of both eicosanoids in a concentration-related matter. Under all conditions, the release of 6-keto PGF exceed the release of 15-HETE. Therefore, cultured bovine coronary artery endothelial cells synthesize cyclooxygenase, lipoxygenase and cytochrome P-450 metabolites of arachidonic acid.  相似文献   

16.
Rat neutrophils isolated from three-hour carrageenan pleural exudates actively metabolize arachidonic acid into three major metabolites, HHT, 11-HETE and 15-HETE. However, in the presence of the calcium ionophore, A23187, or the non-ionic detergent, BRIJ 56, these cells also produce 5-HETE and LTB. The production of these lipoxygenase products is calcium dependent. While non-steroidal anti-inflammatory drugs do not affect 5-HETE or LTB production, BW 755C and ETYA inhibit formation of these metabolites from exogenously added arachidonic acid.  相似文献   

17.
A neoplastic mast cell tumor was grown in mice which had been raised since birth on a diet enriched with eicosapentaenoic acid. Intact harvest mastocytoma cells were stimulated with calcium ionophpore A23187 to produce lipoxygenase products from the polyunsaturated fatty acids liberated from the cellular membranes. Leukotriene B4, B5, C4 and C5 were isolated and characterized by HPLC retention time, ultraviolet absorption spectrometry and mass spectrometry. The arachidonic acid content of the mast cell tumor lipids was altered from 9.2 to 3.9 mole% while eicosapentaenoic acid increased from 0.5 to 4.5 mole % in response to the fish oil-supplement diet.The relative amount of arachidonic and eicosapentaenoic acids (3.9 and 4.5 mole % respectively) were associated with similar amounts of LTB4 and LTP5 synthesized by the cells. These results suggest that the epoxide leukotrine (LTA) derivative can be made efficiently from either arachidonic or eicosapentaenoic acids when both are present in cellular lipids. In contrast, the ratio of LTC4 to LTC5 (10 to 1) indicates that the reaction of LTA with glutathione may be critically dependent upon the structure of the unsaturated fatty acid with the ratio of LTC4/LTB4 (2.0) more than 10 times greater than that (0.16) for LTC5/LTP5.  相似文献   

18.
Studies were conducted to evaluate if arachidonic acid (C20:4) could function as a second messenger within theca cells from the second largest preovulatory (F2) follicle from the ovary of the domestic hen. Arachidonic acid stimulated basal progesterone and androstenedione production, but inhibited LH-induced androstenedione production. The stimulatory effects of arachidonic acid were not altered by either cyclooxygenase or lipoxygenase pathway inhibitors (indomethacin and nordihydroguaiaretic acid, respectively), but were blocked by agents that prevented mobilization and/or efflux of calcium (TMB-8 and verapamil). The inhibitory effects of arachidonic acid on LH-stimulated steroidogenesis were determined to occur both prior and subsequent to cAMP formation. Fifty and 100 microM arachidonic acid attenuated LH- (10 ng) and forskolin- (0.2 microM) induced cAMP levels, and decreased androstenedione and estradiol production following treatment with 8-bromo-cAMP. Phospholipase A2 (PLA2) and the calcium ionophore, A23187, stimulated the release of 3H from theca cells prelabeled with [3H]arachidonic acid, and both PLA2 and the closely related fatty acid, eicosatrienoic acid (C20:3), could replicate the inhibitory effects of arachidonic acid on LH-stimulated androstenedione production. Finally, neither indomethacin nor nordihydroguaiaretic acid blocked the inhibitory effects of arachidonic acid on LH-promoted androstenedione production. We conclude that arachidonic acid can be released within theca cells in response to physiologic (PLA2) and pharmacologic agents (A23187), and accordingly, that it may act directly as a second messenger to modulate both basal and LH-stimulated steroid production.  相似文献   

19.
There is evidence from whole animal and intact lung studies that prostaglandins are involved in the regulation of surfactant secretion. To explore this further we examined the effect of arachidonic acid on secretion of phosphatidylcholine in primary cultures of adult rat type II pneumocytes. Arachidonic acid stimulated phosphatidylcholine secretion and this effect was dependent on concentration in the range 1-8 microM. Arachidonic acid (8 microM) stimulated secretion by 79% from a basal rate of 1.17% total cellular phosphatidylcholine secreted in 90 min to 2.09%. We examined the effects of inhibitors of arachidonic acid metabolism on the stimulatory effect. Nordihydroguairaretic acid (0.1 microM), a lipoxygenase inhibitor, reduced the stimulatory effect by 64%. The same concentration of cyclooxygenase inhibitors had no effect. We conclude that arachidonic acid metabolites stimulate surfactant secretion in type II cells. Whether this effect is mediated by leukotrienes or other products remains to be established.  相似文献   

20.
The role of individual eicosanoids of the arachidonic acid (AA) cascade in the growth control of A549 human lung adenocarcinoma cells has been studied. Cyclooxygenase and lipoxygenase metabolites of [14C]AA incorporated were actively synthesized in the cultures of tumor cells with full confluence unaccomplished. In such cultures inhibitors of AA metabolism (indomethacin and esculetin) and also a lipoxygenase metabolite of AA, 15-hydroxyeicosatetraenoic acid (15-HETE), significantly suppressed the incorporation of [3H]thymidine and biosynthesis of prostaglandin E2(PGE2). Other lipoxygenase metabolites of AA (5-HETE and 12-HETE) had no effect on these parameters. The basic fibroblast growth factor (bFGF) had practically no affect on the growth of A549 cells and the PGE2 production in cultures with 5% fetal calf serum (FCS); however, in the presence of 0.5% FCS this factor significantly increased the number of tumor cells. The growth-stimulating effect of bFGF was completely abolished by a cyclooxygenase inhibitor indomethacin. The data suggest a key role of PGE2 in the growth control of A549 cells with an active synthesis of cyclooxygenase and lipoxygenase metabolites of AA, its importance in realization of the mitogenic effect of bFGF, and specific features of 15-HETE as a down-regulator of the PGE2-dependent proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号