首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein of the tobacco mosaic virus mutant E66 has lysine replacing asparagine of the type strain, vulgare, at position 140. Thus, E66 protein should have one more positive or one less net negative charge than vulgare at pH 6 to 7. To investigate the effect of charge, a comparative study of the polymerization of E66 and vulgare proteins at pH 6.0, 6.2, 6.4, 6.6, and 6.8 at ionic strengths 0.15, 0.10, and 0.05 was made by turbidimetry. Polymerization of E66 protein always proceeded at a lower temperature than vulgare. However, the extent of polymerization was much lower in E66, especially at the higher ionic strengths. Sedimentation velocity results paralleled those from turbidity measurements in that E66 protein polymerizes at lower temperatures than vulgare; the 20 S component is more abundant in E66 protein. Osmotic pressure measurements also show that E66 protein is more polymerized than vulgare, especially at lower pH values. Hydrogen ion titrations of E66 protein were carried out from pH 8 to 5 and back to pH 8 in 0.10 m KCl at three temperatures, 4, 10, and 15 °C. These titrations were reversible when carried out slowly. The isoionic point is near pH 5; thus the charge at pH 7.5 is ?3. The reversible titration results were correlated with the aggregates present at the various pH values and temperatures, determined from the areas under the schlieren peaks in sedimentation velocity experiments. It is found that hydrogen ion binding at the three pH values is correlated with the disappearance of the smallest aggregates and is independent of the type of higher polymer formed. To investigate the effect of ionic strength and pH on the characteristic temperature corresponding to an optical density increment of 0.01 by the method used previously for vulgare, two sets of turbidity measurements were carried out. In the first one the ionic strength was changed from 0.025 to 0.15 in increments of 0.025 at pH 6.0 and 6.4. In the other set, the ionic strength was kept constant at 0.10 and the pH changed from 5.9 to 6.7 in increments of 0.1 pH units. When the analysis of these data was carried out, ΔH1 = 30 kcal/mol was obtained. For the salting out constant a value of 1.7 was found, compared to 2.2 for vulgare, a result consistent with the fact that E66 should be less hydrophobic than vulgare. The electrical work term ΔWel also turns out to be about one-half that for vulgare, which is expected from the lower net negative charge on E66 protein.  相似文献   

2.
The effect of the dipolar ions, glycine, glycylglycine, and glycylglycylglycine on the polymerization of tobacco mosaic virus (TMV) protein has been studied by the methods of light scattering and ultracentrifugation. All three dipolar ions promote polymerization. The major reaction in the early stage is transition from the 4 S to the 20 S state. As in the absence of dipolar ions, the polymerization is enhanced by an increase in temperature; it is endothermic and therefore entropy-driven. The effect of the dipolar ions can be understood in terms of their action as salting-out agents; they increase the activity coefficient of TMV A protein, the 4 S material, and thus shift the equilibrium toward the 20 S state. The salting-out constants, K, for the reaction in 0.10 ionic strength phosphate buffer at pH 6.7 was found by the light scattering method to be 1.6 for glycine, 2.5 for glycylglycine, and 2.5 for glycylglycylglycine. A value of 2.7 was obtained by the ultracentrifugation method for glycylglycine in phosphate buffer at 0.1 ionic strength and pH 6.8 at 10 degrees C. For both glycine and glycylglycine, K increases when the ionic strength of the phosphate buffer is decreased. This result suggests that electrolytes decrease the activity coefficient of the dipolar ions, a salting-in phenomenon. However, the salting-in constants evaluated from these results are substantially higher than those previously determined by solubility measurements. The effect of glycine and glycylglycine on polymerization was studied at pH values between 6.2 and 6.8. The effectiveness of both dipolar ions is approximately 50% greater at pH 6.8 than at pH 6.2. The variation of the extent of polymerization with pH in the presence of the dipolar ions is consistent with the interpretation that approximately one hydrogen ion is bound for half of the polypeptide units in the polymerized A protein.  相似文献   

3.
The entropy-driven polymerization of tobacco mosaic virus protein is favored by an increase in ionic strength, μ, and by a decrease in pH. The effect of ionic strength is interpreted in terms of salting-out and electrical work, a function of charge and, therefore, of pH as well as of μ. The extent of polymerization is measured in terms of a characteristic temperature, T1, corresponding to a characteristic value of the equilibrium constant, KcT1 is measured at an early stage in the polymerization process where the optical density increment from light scatter is 0.01. The theory developed encompassing both salting-out and electrical work terms relates 1T1 to μ approximately according to the equation, 1T1 = C + Bμ ? Aμ12, where C is the ratio of entropy to enthalpy, B is proportional to the salting-out constant divided by enthalpy, and Aμ12 depends upon the square of the charge and is proportional to the electrical work contribution divided by the enthalpy. Data in which μ varied from 0.025 to 0.150 at three pH values, 5.95, 6.35, and 6.50, were fitted to this equation and the parameters C, B, and A were evaluated. Experiments were also carried out at a constant μ of 0.10 at pH values in increments of 0.1 between 5.9 and 6.8. The theory predicts that, at constant μ, 1T1, corrected for the electrical work contribution, is a linear function of pH with a negative slope proportional to the number of hydrogen ions bound per protein unit during polymerization, divided by the enthalpy. The data obtained fit two straight lines with different slopes above and below pH 6.3. Independent experiments carried out by the method of Stevens and Loga show that the number of hydrogen ions bound per protein unit also differs above and below pH 6.3 and the ratio of these is the same as the ratio of the above mentioned slopes. The data, therefore, make it possible to evaluate the enthalpy to be 24.8 kcal/mol of associating A protein and, with this value, the parameters C, B, and A can be interpreted. Standard entropies range from 86 e.u. at pH 6.5 to 88.5 at pH 5.95 and the salting-out constant, KS, is 2.2 at all pH values studied. At μ = 0.10, the values of the electrical work contribution at pH 5.95, 6.35, and 6.50 are +0.298, +0.455, and +0.534 kcal/mol, respectively. Theoretical calculations from models predict values in agreement within a factor of less than two.  相似文献   

4.
1. The non-virus proteins, A4, B3, and B6, characteristically found in tobacco leaf infected with TMV exhibit specific immunochemical cross-reactions with serum prepared against the virus. The close immunochemical relations which occur among these proteins do not extend to any normal tobacco leaf proteins. 2. The rate of appearance of the non-virus proteins in newly infected cultured leaf tissue at various times after inoculation has been determined by immunochemical techniques and by direct isolation of the proteins. Both methods give comparable results. The non-virus proteins appear abruptly at about 220 hours after inoculation, when the TMV content is about one-third its final value. The amount of A4 rises rapidly and then levels off. The B6 content rises rapidly and continuously over the course of the experiment. B3 appears last, and increases in amount considerably more slowly than A4 and B6. 3. The isotope contents of TMV, B3, and B6 which appear in given intervals after inoculation in newly infected leaf cultured in nutrient containing N15H4 have been compared. The isotope levels of concurrent TMV, B3, and B6 are identical within the experimental error. The isotope conditions employed in this experiment lead to the conclusion that this coincidence of N15 levels means that the virus and non-virus proteins are probably synthesized at about the same time from the same non-protein source of nitrogen. 4. Possible interpretations of the available data on the non-virus proteins are discussed. It is likely that one or more of these proteins represents small protein units which occur in the TMV nucleoprotein.As they exist in the infected leaf, the non-virus proteins are probably no longer available to the biochemical processes which lead to TMV synthesis. They are probably not precursors of TMV protein in a temporal sense.  相似文献   

5.
1. Exhaustive fractionation of leaves from tobacco plants systemically infected with TMV has led to the isolation of two non-virus proteins, B3 and B6, and the detection of a third, A4, which do not occur in comparable uninfected plants. 2. Components B3 and B6 have been found consistently in a series of ten extracts from plants grown over an 18 month period in all seasons of the year. It is concluded that these components are as characteristic of the infected plant as TMV itself. 3. As they occur in the initial extracts, the non-virus proteins are of low molecular weight (S20 ca. 3). On treatment, each component tends to form a high molecular weight polymer with an electrophoretic mobility considerably greater than that of the starting material. The high molecular weight derivatives of A4, B3, and B6 have been designated A8, B8, and B7 respectively. There is no evidence that these high molecular weight components occur as such in the infected leaf. 4. The non-virus proteins are free of nucleic acid and are not infectious. They cross-react immunochemically with TMV. 5. Compared with TMV content, the amounts of the non-virus proteins found in infected leaf are relatively small, falling in the range of 10 to 150 micrograms per gm. of tissue.  相似文献   

6.
R B Scheele  M A Lauffer 《Biochemistry》1967,6(10):3076-3081
  相似文献   

7.
To determine the stage at which H+ ions are bound during the entropy-driven polymerization of tobacco mosaic virus protein, acid-base titrations were carried out at a concentration of 5 mg/ml in 0.1 m-KCl from pH 8 to pH 5.2 and back to pH 8 at 4, 10, 15 and 20 °C. The titration was always completely reversible when the addition of acid or base was so slow that the experiment required seven hours in each direction. When the titration was started at pH 7 and performed down and up twice as rapidly, a hysteresis loop, indistinguishable from one previously published, was obtained at 20 °C.Ultracentrifugation experiments were carried out at selected pH values at the four temperatures. H+ ion uptake, as determined from the reversible titration curves, is correlated with the disappearance of the 4 S component and is independent of whether the polymerized species is in a 20 S or higher state of aggregation. At pH 7, approximately 1 mole of H+ ion is bound per mole of monomer. At pH values between 6.56 and 6.05, 1.5 moles of H+ ion are bound per mole of monomer upon polymerization. At pH 6.05, 0.5 mole of H+ ion is bound before any polymerization takes place.Tobacco mosaic virus protein at 20 °C in an unbuffered 0.1 m-KCl solution at pH 7.18 at a concentration of 41 mg/ml, largely in the 20 S state, was depolymerized entirely to the 4 S state by dilution with 0.1 m-KCl adjusted to the same pH. Under these conditions, there was no pH change, indicating that no H + ions are released.These seemingly contradictory findings can be explained by assuming that the 4 S component polymerizes to form either double discs without binding H+ ions, or, alternatively, two-turn helices accompanied by the binding of H+ ions. Both double discs and two-turn helices sediment at approximately 20 S. Whether polymerization in the neighborhood of pH 7 leads to helices or discs depends upon the availability of H+ ions.  相似文献   

8.
The effects of absolute temperature (T), ionic strength (μ), and pH on the polymerization of tobacco mosaic virus protein from the 4 S form (A) to the 20 S form (D) were investigated by the method of sedimentation velocity. The loading concentration in grams per liter (C) was determined at which a just-detectable concentration (β) of 20 S material appeared. It was demonstrated experimentally that under the conditions employed herein, an equilibrium concentration of 20 S material was achieved in 3 h at the temperature of the experiment and that 20 S material dissociated again in 4 h or less to 4 S material either upon lowering the temperature or upon dilution. Thus, the use of thermodynamic equations for equilibrium processes was shown to be valid. The equation used to interpret the results, log (C?β) = constant + (ΔH12.3RT) + (ΔW1el2.3RT) ? K′ + ζpH, was derived from three separate models of the process, the only difference being in the anatomy of the constant; thus, the method of analysis is essentially independent of the model. ΔH1 and ΔW1el are the enthalpy and the change in electrical work per mole of A protein (the trimer of the polypeptide chain), Ks is the salting-out constant on the ionic strength basis, ζ is the number of moles of hydrogen ion bound per mole of A protein in the polymerization, and R is the gas constant. The three models leading to this equation are: a simple 11th-order equilibrium between A1 (the trimer of the polypeptide chain) and D, either the double disk or the double spiral of approximately the same molecular weight, designated model A; a second model, designated B, in which A1 was assumed to be in equilibrium with D at the same time that it is in equilibrium with A2, A3, etc., dimers and trimers, etc., of A1 in an isodesmic system; and a phase-separation model, designated model C, in which A protein is treated as a soluble material in equilibrium with D, considered as an insoluble phase. From electrical work theory, ΔWel1/T was shown to be essentially independent of T; therefore, in experiments at constant μ and constant pH the equation of log (C ? β) versus 1/T is linear with a slope of ΔH1/2.3R. The results fit such an equation over nearly a 20 °C-temperature range with a single value of ΔH1 of +32 kcal/mol A1. Results obtained when T and pH were held constant but μ was varied did not fit a straight line, which shows that more than simple salting-out is involved. When the effect of ionic strength on the electrical work contribution was considered in addition to salting-out, the data were interpreted to indicate a value of ΔW1el of 1.22 kcal/mol A1 at pH 6.7 and a value of 4.93 for Ks. When μ and T were held constant but pH was varied, and when allowance was made for the effect of pH changes on the electrical work contribution, a value of 1.1 was found for ζ. This means that something like 1.1 mol of hydrogen ion must be bound per mole of A1 protein in the formation of D. When this is added to the small amount of hydrogen ion bound per A1 before polymerization, at the pH values used, it turned out that for D to be formed, 1.5 H+ ions must be bound per A1 or 0.5 per protein polypeptide chain. This amounts to 1 H+ ion per polypeptide chain for half of the protein units, presumably those in one but not the other layer of the double disk or turn of the double spiral. When polymerization goes beyond the D stage, as shown by previously published data, additional H+ ions are bound. Simultaneous osmotic pressure studies and sedimentation studies were carried out, in both cases as a function of loading concentration C. These results were in complete disagreement with models A and C but agreed reasonably well with model B. The sedimentation studies permitted evaluation of the constant, β, to be 0.33 g/liter.  相似文献   

9.
The kinetics of the endothermic polymerization reaction of tobacco mosaic virus protein in the mild acid region was studied by means of temperature-jump (rising time of 6 sec)-turbidimetry, electron microscopy, and computer simulation. The time course profile of the turbidity increase changed from a normal one to an anomalous one as the size of the temperature-jump was made greater. The anomalous type polymerization profile, which we named the "transient-saturation" type, could be characterized by a rapid increase of turbidity and its transient saturation, and a slow increase to the final level. At a higher concentration of the protein, this transient-saturation effect was more marked, whereas the slow turbidity in the second phase occurred with a higher rate. This transient-saturation type polymerization profile was observed also in a pH-induced polymerization reaction. It was not observed in the case of the N-bromosuccinimide modified tobacco mosaic virus protein under a similar environmental change. By an electron microscopic study and computer simulation, it was revealed that in the first phase, a large number of short polymers were formed, and the concentration of the polymerizing units was rapidly reduced to the equilibrium value, and the polymerization reaction stopped transiently. In the second phase, polymer-polymer associations took place slowly and longer polymers were formed. The revlevance of the present study to the polymerization reaction of actin, myosin, and to a transient-overshoot type polymerization are discussed.  相似文献   

10.
Summary A comparison was made of the amino acid sequences of the proteins encoded by RNAs 1 and 2 of alfalfa mosaic virus (A1MV) and brome mosaic virus (BMV), and the 126K and 183K proteins encoded by tobacco mosaic virus (TMV). Three blocks of extensive homology of about 200 to 350 amino acids each were observed. Two of these blocks are located in the A1MV and BMV RNA 1 encoded proteins and the TMV encoded 126K protein; they are situated at the N-terminus and C-terminus, respectively. The third block is located in the A1MV and BMV RNA 2 encoded proteins and the C-terminal part of the TMV encoded 183K protein. These homologies are discussed with respect to the functional equivalence of these putative replicase proteins and a possible evolutionary connection between A1MV, BMV and TMV.  相似文献   

11.
12.
Bovine serum albumin (BSA) causes tobacco mosaic virus (TMV) to crystallize at pH values where both have negative charges. The amount of albumin required to precipitate the virus varies inversely with ionic strength of added electrolyte. At pH values above 5, the precipitating power is greatest when BSA has the maximum total, positive plus negative, charge. Unlike early stages of the crystallization of TMV in ammonium sulfate-phosphate solutions, which can be reversed by lowering the temperature, the precipitation of TMV by BSA is not readily reversed by changes in temperature. The logarithm of the apparent solubility of TMV in BSA solutions, at constant ionic strength of added electrolyte, decreases linearly with increasing BSA concentration. This result and the correlation of precipitating power with total BSA charge suggest that BSA acts in the manner of a salting-out agent. The effect of BSA on the reversible entropy-driven polymerization of TMV protein (TMVP) depends on BSA concentration, pH, and ionic strength. In general, BSA promotes TMVP polymerization, and this effect increases with increasing BSA concentrations. The effect is larger at pH 6.5 than at pH 6. Even though increasing ionic strength promotes polymerization of TMVP in absence of BSA, the effect of increasing ionic strength from 0.08 to 0.18 at pH 6.5 decreases the polymerization-promoting effect of BSA. Likewise, the presence of BSA decreases the polymerization-promoting effect of ionic strength. The polymerization-promoting effect of BSA can be interpreted in terms of a process akin to salting-out. The mutual suppression of the polymerization-promoting effects of BSA and of electrolytes by each other can be partially explained in terms of salting-in of BSA.  相似文献   

13.
14.
Assembly of tobacco mosaic virus   总被引:2,自引:0,他引:2  
  相似文献   

15.
A study was performed on the interaction of cucumber mosaic virus (CMV) of potato virus Y (PVY) with tobacco mosaic virus (TMV). Interference was evaluated using tobacco plantsNicotiana tabacum cv. Java responding to CMV and PVY with a systemic infection and to TMV with local necrotic lesions. The decrease in TMV — induced lesion number gave evidence of a decrease in susceptibility caused by the previous infection with CMV or PVY, the decrease of lesion enlargement demonstrated a decreased TMV reproduction in the plants previously infected with CMV or PVY. The interference concerned was incomplete, as evaluated from reproduction of the challenging TMV and from the decrease in susceptibility of the host to TMV brought about by the first infection with CMV or PVY.  相似文献   

16.
The interaction between tobacco mosaic virus (TMV) and tobacco harbouring the N gene is a classical system for studying gene-for-gene interactions in disease resistance. The N gene confers resistance to TMV by mediating defence responses that function to limit viral replication and movement. We isolated the N gene and determined that N belongs to the nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) class of plant disease resistance genes, and encodes both full-length and truncated proteins. Sequence homologies and mutagenesis studies indicated a signalling role for the N protein similar to that seen for proteins involved in defence responses in insects and mammals. The N gene confers resistance to TMV in transgenic tomato, demonstrating the use of the NBS-LRR class of disease resistance genes in engineering crop resistance. From the pathogen side of this interaction, the TMV 126 kDa replicase protein has been implicated as the avirulence factor that triggers N-mediated defence responses. We employed Agrobacterium-mediated expression strategies to demonstrate that expression of the putative helicase region of the replicase protein is sufficient to elicit N-mediated defences. The thermosensitivity of the N-mediated response to TMV is retained when induced by expression of this replicase fragment. Thus, both components of this gene-for-gene interaction are now available for studies that address the molecular mechanisms involved in N-mediated TMV resistance.  相似文献   

17.
Conditions were established for the introduction of both tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) RNAs into tobacco mesophyll protoplasts by electroporation. The proportion of infected protoplasts was quantified by staining with viral coat protein-specific antibodies conjugated to fluorescein isothiocyanate. Approximately 30–40% of the protoplasts survived electroporation. Under optimal conditions, up to 75% of these were infected with TMV-RNA. Successful infection was demonstrated in 19 out of 20 experiments. Optimal infection was achieved with several direct current pulses of 90 sec at a field strength of 5 to 10 kV/cm. Changing the position of the protoplasts within the chamber between electric pulses was essential for achievement of high rates of infection. Optimal viral RNA concentration was about 10 g/ml in a solution of 0.5 M mannitol without buffer salts.  相似文献   

18.
Summary Leaves of tobacco plants (Nicotiana tabacum cv. Samsun NN) which are reacting hypersensitively to infection with tobacco mosaic virus contain 10 major pathogenesis-related (PR) proteins which are absent, or present in small amounts in uninfected leaves. We describe here a preparative procedure of purification of the tobacco PR-proteins which involves a combination of conventional and high-performance liquid chromatography. The separation and isolation of the proteins were based on differences in net charge at different pH values, in isoelectric point and in apparent molecular weight. This procedure led to the purification to homogeneity of 8 PR-proteins, as shown by polyacrylamide slab gel electrophoresis (PAGE) of the purified proteins under denaturing and non-denaturing conditions. These were the 3 well-known proteins PR-1a,-1b and-1c, and 5 other major PR-proteins, called PR-2,-N,-O,-P and-Q, according to the nomenclature of Van Loon (39). None of the purified PR-proteins gave a positive Schiff reaction for carbohydrate content. Molecular weight determinations from gel permeation chromatography and from sodium dodecyl sulphate (SDS)-PAGE indicated that all 8 PR-proteins were monomers and that three groups could be distinguished among them. The first group is the PR-1 group containing PR-1a,-1b and-1c (12000 MW), the second consists of PR-P and PR-Q (14000 MW) and the third of PR-2, PR-N and PR-O (25000 MW). In the PR-1 group, PR-1a can be distinguished clearly from the two other members on denaturing slab gels containing both SDS and urea.  相似文献   

19.
Summary Protein changes occurred in callus cells of hypersensitive tobacco (Nicotiana tabacum var. Xanthi-nc) 72 hr after inoculation with tobacco mosaic virus and incubation on a minimal growth medium. Two protein bands, serologically related to viral coat protein, were obtained from extracts of infected cells following electrophoresis on 7% and 10% polyacrylamide gels. An additional, slower migrating protein, perhaps due to virus-induced stimulation of a host protein, also was detected. Although local lesions appeared on callus after 40 hr of incubation, four proteins previously reported in lesion-bearing hypersensitive tobacco leaves were not found. The possible significance of this and the usefulness of a callus-TMV system as a tool to study virus-induced protein changes are discussed. Michigan Agricultural Experiment Station Journal Paper No. 7191.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号