首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of clinical isolates of Pseudomonas aeruginosa are cytotoxic to mammalian cells due to the action of the 74-kDa protein ExoU, which is secreted into host cells by the type III secretion system and whose function is unknown. Here we report that the swift and profound cytotoxicity induced by purified ExoU or by an ExoU-expressing strain of P. aeruginosa is blocked by various inhibitors of cytosolic (cPLA2) and Ca2+ -independent (iPLA2) phospholipase A2 enzymes. In contrast, no cytoprotection is offered by inhibitors of secreted phospholipase A2 enzymes or by a number of inhibitors of signal transduction pathways. This suggests that phospholipase A2 inhibitors may represent a novel mode of treatment for acute P. aeruginosa infections. We find that 300-600 molecules of ExoU/cell are required to achieve half-maximal cell killing and that ExoU localizes to the host cell plasma membrane in punctate fashion. We also show that ExoU interacts in vitro with an inhibitor of cPLA2 and iPLA2 enzymes and contains a putative serine-aspartate catalytic dyad homologous to those found in cPLA2 and iPLA2 enzymes. Mutation of either the serine or the aspartate renders ExoU non-cytotoxic. Although no phospholipase or esterase activity is detected in vitro, significant phospholipase activity is detected in vivo, suggesting that ExoU requires one or more host cell factors for activation as a membrane-lytic and cytotoxic phospholipase.  相似文献   

2.
As Pseudomonas aeruginosa ExoU possesses two functional blocks of homology to calcium-independent (iPLA(2)) and cytosolic phospholipase A(2) (cPLA(2)), we addressed the question whether it would exhibit a proinflammatory activity by enhancing the synthesis of eicosanoids by host organisms. Endothelial cells from the HMEC-1 line infected with the ExoU-producing PA103 strain exhibited a potent release of arachidonic acid (AA) that could be significantly inhibited by methyl arachidonyl fluorophosphonate (MAFP), a specific PLA(2) inhibitor, as well as significant amounts of the cyclooxygenase (COX)-derived prostaglandins PGE(2) and PGI(2). Cells infected with an isogenic mutant defective in ExoU synthesis did not differ from non-infected cells in the AA release and produced prostanoids in significantly lower concentrations. Infection by PA103 induced a marked inflammatory response in two different in vivo experimental models. Inoculation of the parental bacteria into mice footpads led to an early increase in the infected limb volume that could be significantly reduced by inhibitors of both COX and lipoxygenase (ibuprofen and NDGA respectively). In an experimental respiratory infection model, bronchoalveolar lavage (BAL) from mice instilled with 10(4) cfu of PA103 exhibited a marked influx of inflammatory cells and PGE(2) release that could be significantly reduced by indomethacin, a non-selective COX inhibitor. Our results suggest that ExoU may contribute to P. aeruginosa pathogenesis by inducing an eicosanoid-mediated inflammatory response of host organisms.  相似文献   

3.
Numerous Gram-negative bacterial pathogens use type III secretion systems to deliver effector molecules into the cytoplasm of a host cell. Many of these effectors have evolved to manipulate the host ubiquitin system to alter host cell physiology or the location, stability, or function of the effector itself. ExoU is a potent A2 phospholipase used by Pseudomonas aeruginosa to destroy membranes of infected cells. The enzyme is held in an inactive state inside of the bacterium due to the absence of a required eukaryotic activator, which was recently identified as ubiquitin. This study sought to identify the region of ExoU required to mediate this interaction and determine the properties of ubiquitin important for binding, ExoU activation, or both. Biochemical and biophysical approaches were used to map the ubiquitin-binding domain to a C-terminal four-helix bundle of ExoU. The hydrophobic patch of ubiquitin is required for full binding affinity and activation. Binding and activation were uncoupled by introducing an L8R substitution in ubiquitin. Purified L8R demonstrated a parental binding phenotype to ExoU but did not activate the phospholipase in vitro. Utilizing these new biochemical data and intermolecular distance measurements by double electron-electron resonance, we propose a model for an ExoU-monoubiquitin complex.  相似文献   

4.
Acute lung injury in Pseudomonas aeruginosa pneumonia depends primarily on ExoU that is delivered directly into the eukaryotic cell via the type III secretion system. Recent studies demonstrated that ExoU has lipase activity, and that the cytotoxicity of ExoU is dependent on its patatin-like phospholipase domain. We investigated the phospholipase A (PLA) activity of ExoU. ExoU, but not non-catalytic ExoU-S142A, preincubated with the BEAS-2B cell lysate showed a weak increase of Ca(2+)-independent PLA(2) activity. When activated ExoU was mixed with secretory type PLA(2), more phospholipase activity was observed, suggesting that ExoU has lysophospholipase A (lysoPLA) activity. A significant increase in lysoPLA activity was also observed. Glycerol enhanced this activity and inhibitors of iPLA(2) suppressed ExoU's lysoPLA activity. Our results suggest that ExoU has a potent lysoPLA activity that requires the presence of the catalytically active site Ser(142) with an unknown eukaryotic cell factor(s) for its activation.  相似文献   

5.
The combination of a large genome encoding metabolic versatility and conserved secreted virulence determinants makes Pseudomonas aeruginosa a model pathogen that can be used to study host-parasite interactions in many eukaryotic hosts. One of the virulence regulons that likely plays a role in the ability of P. aeruginosa to avoid innate immune clearance in mammals is a type III secretion system (TTSS). Upon cellular contact, the P. aeruginosa TTSS is capable of delivering a combination of at least four different effector proteins, exoenzyme S (ExoS), ExoT, ExoU, and ExoY. Two of the four translocated proteins, ExoS and ExoU, are cytotoxic to cells during infection and transfection. The mechanism of cytotoxicity of ExoS is unclear. ExoU, however, has recently been characterized as a member of the phospholipase A family of enzymes, possessing at least phospholipase A2 activity. Similar to ExoS, ExoT and ExoY, ExoU requires either a eukaryotic-specific modification or cofactor for its activity in vitro. The biologic effects of minimal expression of ExoU in yeast can be visualized by membrane damage to different organelles and fragmentation of the vacuole. In mammalian cells, the direct injection of ExoU causes irreversible damage to cellular membranes and rapid necrotic death. ExoU likely represents a unique enzyme and is the first identified phopholipase virulence factor that is translocated into the cytosol by TTSS.  相似文献   

6.
Pseudomonas aeruginosa is an opportunistic pathogen that is associated with hospital-acquired infections, ventilator-associated pneumonia, and morbidity of immunocompromised individuals. A subpopulation of P. aeruginosa encodes a protein, ExoU, which exhibits acute cytotoxicity. Toxicity is directly related to the phospholipase A2 activity of the protein after injection into the host cytoplasm via a type III secretion system. ExoU enzymatic activity requires eukaryotic cofactors, ubiquitin or ubiquitin-modified proteins. When administered extracellularly, ExoU is unable to intoxicate epithelial cells in culture, even in the presence of the cofactor. Injection or transfection of ExoU is necessary to observe the acute cytotoxic response. Biochemical approaches indicate that ExoU possesses high affinity to a multifunctional phosphoinositide, phosphatidylinositol 4,5-bisphosphate or PI(4,5)P2 and that it is capable of utilizing this phospholipid as a substrate. In eukaryotic cells, PI(4,5)P2 is mainly located in the cytoplasmic side of the plasma membrane and anchors adaptor proteins that are involved in cytoskeletal structures, focal adhesions, and plasma membranes. Time-lapse fluorescent microscopy analyses of infected live cells demonstrate that ExoU intoxication correlates with intracellular damage in the early phases of infection, such as disruption of focal adhesions, cytoskeletal collapse, actin depolymerization, and cell rounding. At later time points, a membrane blebbing phenotype was prominent prior to the loss of the plasma membrane integrity and barrier function. Membrane blebbing appears to accelerate membrane rupture and the release of intracellular markers. Our data suggest that in eukaryotic host cells, intracellular ExoU targets and hydrolyzes PI(4,5)P2 on the plasma membrane, causing a subsequent disruption of cellular structures and membrane integrity.  相似文献   

7.
Bacterial toxins require localization to specific intracellular compartments following injection into host cells. In this study, we examined the membrane targeting of a broad family of bacterial proteins, the patatin-like phospholipases. The best characterized member of this family is ExoU, an effector of the Pseudomonas aeruginosa type III secretion system. Upon injection into host cells, ExoU localizes to the plasma membrane, where it uses its phospholipase A2 activity to lyse infected cells. The targeting mechanism of ExoU is poorly characterized, but it was recently found to bind to the phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a marker for the plasma membrane of eukaryotic cells. We confirmed that the membrane localization domain (MLD) of ExoU had a direct affinity for PI(4,5)P2, and we determined that this binding was required for ExoU localization. Previously uncharacterized ExoU homologs from Pseudomonas fluorescens and Photorhabdus asymbiotica also localized to the plasma membrane and required PI(4,5)P2 for this localization. A conserved arginine within the MLD was critical for interaction of each protein with PI(4,5)P2 and for localization. Furthermore, we determined the crystal structure of the full-length P. fluorescens ExoU and found that it was similar to that of P. aeruginosa ExoU. Each MLD contains a four-helical bundle, with the conserved arginine exposed at its cap to allow for interaction with the negatively charged PI(4,5)P2. Overall, these findings provide a structural explanation for the targeting of patatin-like phospholipases to the plasma membrane and define the MLD of ExoU as a member of a new class of PI(4,5)P2 binding domains.  相似文献   

8.
Group A Streptococcus (GAS) is an important human pathogen that causes many types of infections, including pharyngitis and severe invasive diseases. We recently sequenced the genome of a serotype M3 strain and identified a prophage-encoded secreted phospholipase A(2) designated SlaA. To study SlaA structure-activity relationships, 20 site-specific mutants were constructed by alanine-replacement mutagenesis and purified to apparent homogeneity. Enzymatic activity was greatly reduced by alanine replacement of amino acid residues previously described as crucial in the catalytic mechanism of secreted phospholipase A(2). Similarly, substitution of five residues in an inferred Ca(2+)-binding loop and three residues in the inferred active site region resulted in loss of activity of 76.5% or greater relative to the wild-type enzyme. Analysis of enzyme substrate specificity confirmed SlaA as a phospholipase A(2), with activity against multiple phospholipid head groups and acyl chains located at the sn-2 position. PCR analysis of 1,189 GAS strains representing 48 M protein serotypes commonly causing human infections identified the slaA gene in 129 strains of nine serotypes (M1, M2, M3, M4, M6, M22, M28, M75, and st3757). Expression of SlaA by strains of these serotypes was confirmed by Western immunoblot. SlaA production increased rapidly and substantially on co-culture with Detroit 562 human pharyngeal epithelial cells. Together, these data provide new information about a novel extracellular enzyme that participates in GAS-human interactions.  相似文献   

9.
ExoU, a Pseudomonas aeruginosa cytotoxin injected via the type III secretion system into host cells, possesses eicosanoid-mediated proinflammatory properties due to its phospholipase A2 (PLA2) activity. This report addressed the question whether ExoU may modulate the expression of adhesion molecules in host cells, therefore contributing to the recruitment of leukocyte into infected tissues. ExoU was shown to down-regulate membrane-bound ICAM-1 (mICAM-1) and up-regulate the release of soluble ICAM-1 (sICAM-1) from P. aeruginosa-infected endothelial cells. The modulation of ICAM-1 depended on the direct effect of the ExoU PLA2 activity and involved the cyclooxygenase (COX) pathway. No differences in mICAM-1 and sICAM-1 mRNA levels were observed when cultures were infected with the ExoU-producing PA103 strain or the mutant PA103ΔexoU, suggesting that ExoU may proteolytically cleave mICAM-1, producing sICAM-1 in a COX-dependent pathway.  相似文献   

10.
Pseudomonas aeruginosa delivers the toxin ExoU to eukaryotic cells via a type III secretion system. Intoxication with ExoU is associated with lung injury, bacterial dissemination and sepsis in animal model and human infections. To search for ExoU targets in a genetically tractable system, we used controlled expression of the toxin in Saccharomyces cerevisiae. ExoU was cytotoxic for yeast and caused a vacuolar fragmentation phenotype. Inhibitors of human calcium-independent (iPLA(2)) and cytosolic phospholipase A(2) (cPLA(2)) lipase activity reduce the cytotoxicity of ExoU. The catalytic domains of patatin, iPLA(2) and cPLA(2) align or are similar to ExoU sequences. Site-specific mutagenesis of predicted catalytic residues (ExoUS142A or ExoUD344A) eliminated toxicity. ExoU expression in yeast resulted in an accumulation of free palmitic acid, changes in the phospholipid profiles and reduction of radiolabeled neutral lipids. ExoUS142A and ExoUD344A expressed in yeast failed to release palmitic acid. Recombinant ExoU demonstrated lipase activity in vitro, but only in the presence of a yeast extract. From these data we conclude that ExoU is a lipase that requires activation or modification by eukaryotic factors.  相似文献   

11.
Disease causing bacteria often manipulate host cells in a way that facilitates the infectious process. Many pathogenic gram-negative bacteria accomplish this by using type III secretion systems. In these complex secretion pathways, bacterial chaperones direct effector proteins to a needle-like secretion apparatus, which then delivers the effector protein into the host cell cytosol. The effector protein ExoU and its chaperone SpcU are components of the Pseudomonas aeruginosa type III secretion system. Secretion of ExoU has been associated with more severe infections in both humans and animal models. Here we describe the 1.92 Å X-ray structure of the ExoU–SpcU complex, a full-length type III effector in complex with its full-length cognate chaperone. Our crystallographic data allow a better understanding of the mechanism by which ExoU kills host cells and provides a foundation for future studies aimed at designing inhibitors of this potent toxin.  相似文献   

12.
13.
Sato H  Feix JB  Frank DW 《Biochemistry》2006,45(34):10368-10375
Pseudomonas aeruginosa is an opportunistic pathogen that uses a type III secretion system and four effector proteins to avoid innate immune responses. ExoS, ExoT, ExoY, and ExoU all possess enzymatic activities that disrupt host cellular physiology and prevent bacterial clearance by host defense mechanisms. The specificity of these toxins for eukaryotic cells depends on the presence of substrate targets and eukaryotic cofactors responsible for effector activation. We used a combined biochemical and proteomic approach to identify Cu(2+), Zn(2+)-superoxide dismutase (SOD1) as a cofactor that activates the phospholipase activity of ExoU. Recombinant ExoU (rExoU) was activated in a dose-dependent manner by either bovine liver SOD1 or the yeast ortholog, Sod1p, but not by either Fe or Mn-containing SODs from E. coli or small molecule SOD mimetics. Inhibitor studies indicated that SOD enzymatic activity was not required for the activation of rExoU. The physical interaction between rExoU and SOD was demonstrated by capture techniques using either of the two proteins immobilized onto the solid phase. Identification of SOD as a cofactor allowed us to develop a new assay using a fluorescent substrate to measure the phospholipase activity of rExoU. The ability of SOD to act as a cytoplasmic cofactor stimulating ExoU phospholipase activity has significant implications for the biological activity of the toxin. Further elucidation of the structural mechanism of ExoU activation by this eukaryotic cofactor may provide a rational approach to the design of inhibitors that can diminish tissue damage during infection by ExoU-producing strains of P. aeruginosa.  相似文献   

14.
ExoU is a potent Pseudomonas aeruginosa cytotoxin translocated into host cells by the type III secretion system. A comparison of genomes of various P. aeruginosa strains showed that that the ExoU determinant is found in the same polymorphic region of the chromosome near a tRNA(Lys) gene, suggesting that exoU is a horizontally acquired virulence determinant. We used yeast recombinational cloning to characterize four distinct ExoU-encoding DNA segments. We then sequenced and annotated three of these four genomic regions. The sequence of the largest DNA segment, named ExoU island A, revealed many plasmid- and genomic island-associated genes, most of which have been conserved across a broad set of beta- and gamma-Proteobacteria. Comparison of the sequenced ExoU-encoding genomic islands to the corresponding PAO1 tRNA(Lys)-linked genomic island, the pathogenicity islands of strain PA14, and pKLC102 of clone C strains allowed us to propose a mechanism for the origin and transmission of the ExoU determinant. The evolutionary history very likely involved transposition of the ExoU determinant onto a transmissible plasmid, followed by transfer of the plasmid into different P. aeruginosa strains. The plasmid subsequently integrated into a tRNA(Lys) gene in the chromosome of each recipient, where it acquired insertion sequences and underwent deletions and rearrangements. We have also applied yeast recombinational cloning to facilitate a targeted mutagenesis of ExoU island A, further demonstrating the utility of the specific features of the yeast capture vector for functional analyses of genes on large horizontally acquired genetic elements.  相似文献   

15.
Human neutrophil peptides (HNPs) are released from granules of neutrophils in response to various activating stimuli and they participate in the killing of bacteria and the stimulation of various inflammatory responses. HNPs also inhibit infectivity of enveloped viruses, including influenza A virus (IAV). In this study, we demonstrate that HNPs increase the uptake of IAV and bacteria by neutrophils. The dimeric HNPs also induced aggregation of IAV and bacterial particles, which may, in part, explain their ability to increase uptake. HNPs did not increase neutrophil respiratory burst responses to IAV. We have recently demonstrated direct interactions of HNPs with surfactant protein D (SP-D), another important effector of innate immunity and antimicrobial host defense. Although HNPs did not alter SP-D-dependent uptake of IAV, they counteracted the ability of SP-D to increase IAV-induced neutrophil H2O2 generation. Our studies reveal previously unappreciated functional effects of HNPs, expand our understanding of the antiviral properties of HNPs, and suggest important interactions between collectins and HNPs in the host response to viruses and bacteria.  相似文献   

16.
Expression of ExoU by Pseudomonas aeruginosa is correlated with acute cytotoxicity in a number of epithelial and macrophage cell lines. In vivo, ExoU is responsible for epithelial injury. The absence of a known motif or significant homology with other proteins suggests that ExoU may possess a new mechanism of toxicity. To study the intracellular effects of ExoU, we developed a transient-transfection system in Chinese hamster ovary cells. Transfection with full-length but not truncated forms of ExoU inhibited reporter gene expression. Inhibition of reporter activity after cotransfection with ExoU-encoding constructs was correlated with cellular permeability and death. The toxicity of truncated versions of ExoU could be restored by coexpression of the remainder of the molecule from separate plasmids in trans. This strategy was used to map N- and C-terminal regions of ExoU that are necessary but not sufficient for toxicity. Disruption of a middle region of the protein reduces toxicity. This portion of the molecule is postulated to allow the N- and C-terminal regions to functionally complement one another. In contrast to ExoS and ExoT, native and recombinant ExoU molecules do not oligomerize or form aggregates. The complex domain structure of ExoU suggests that, like other P. aeruginosa-encoded type III effectors (ExoS and ExoT), ExoU toxicity may result from a molecule that possesses more than one activity.  相似文献   

17.

The Sulfolobus acidocaldarius S-layer is composed of two main proteins: SlaA, which forms the ordered structure of the S-layer matrix, and SlaB, which supports and anchors the S-layer into the tetraether lipid membrane. While SlaA has previously been purified by exploiting its thermotolerance and high resistance to detergents, SlaB has resisted isolation, particularly from the cell membrane. Removal of proteins other than those of the S-layer is especially difficult if large batch-scale culture volumes are unavailable. Here, we describe a benchtop-scale protocol for the purification of SlaA from S. acidocaldarius, enabling isolation of SlaB using size exclusion chromatography (gel filtration). Using this protocol, we were able to identify for the first time tetraether lipids strongly attached to SlaB via heat- and detergent-resistant interactions.

  相似文献   

18.
19.
ExoU is a 74-kDa, water-soluble toxin injected directly into mammalian cells through the type III secretion system of the opportunistic pathogen, Pseudomonas aeruginosa. Previous studies have shown that ExoU is a Ca2+-independent phospholipase that requires a eukaryotic protein cofactor. One protein capable of activating ExoU and serving as a required cofactor was identified by biochemical and proteomic methods as superoxide dismutase (SOD1). In these studies, we carried out site-directed spin-labeling electron paramagnetic resonance spectroscopy to examine the effects of SOD1 and substrate liposomes on the structure and dynamics of ExoU. Local conformational changes within the catalytic site were observed in the presence of substrate liposomes, and were enhanced by the addition of SOD1 in a concentration-dependent manner. Conformational changes in the C-terminal domain of ExoU were observed upon addition of cofactor, even in the absence of liposomes. Double electron-electron resonance experiments indicated that ExoU samples multiple conformations in the resting state. In contrast, addition of SOD1 induced ExoU to adopt a single, well-defined conformation. These studies provide, to our knowledge, the first direct evidence for cofactor- and membrane-induced conformational changes in the mechanism of activation of ExoU.  相似文献   

20.
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex with its chaperone, SpcU. ExoU folds into membrane-binding, bridging, and phospholipase domains. SpcU maintains the N-terminus of ExoU in an unfolded state, required for secretion. The phospholipase domain carries an embedded catalytic site whose position within ExoU does not permit direct interaction with the bilayer, which suggests that ExoU must undergo a conformational rearrangement in order to access lipids within the target membrane. The bridging domain connects catalytic domain and membrane-binding domains, the latter of which displays specificity to PI(4,5)P2. Both transfection experiments and infection of eukaryotic cells with ExoU-secreting bacteria show that ExoU ubiquitination results in its co-localization with endosomal markers. This could reflect an attempt of the infected cell to target ExoU for degradation in order to protect itself from its aggressive cytotoxic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号