首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Communities assemble through a combination of stochastic processes, which can make environmentally similar communities divergent (high β-diversity), and deterministic processes, which can make environmentally similar communities convergent (low β-diversity). Top predators can influence both stochasticity (e.g. colonization and extinction events) and determinism (e.g. size of the realized species pool), in community assembly, and thus their net effect is unknown. We investigated how predatory fish influenced the scaling of prey diversity in ponds at local and regional spatial scales. While fish reduced both local and regional richness, their effects were markedly more intense at the regional scale. Underlying this result was that the presence of fish made localities within metacommunities more similar in their community composition (lower β-diversity), suggesting that fish enhance the deterministic, relative to the stochastic, components of community assembly. Thus, the presence of predators can alter fundamental mechanisms of community assembly and the scaling of diversity within metacommunities.  相似文献   

2.
It is commonly assumed that variation in abiotic site conditions influences the number of niches, which in turn affects the potential species richness in an area. Based on theoretical considerations, abiotic variation is often used as an estimator of species richness at broad scales, while at finer landscape scales the diversity of habitat types is used. However, habitat estimators assume the landscape to be composed of discrete, homogeneous patches with sharp boundaries, and such a concept is hard to apply in gradient-dominated landscapes. The aim of this study was therefore to investigate the influence of topographic variability (TV) on species richness at the landscape level (gamma (γ) diversity) and on its components (alpha (α) and beta (β) diversity) at microsite and habitat group levels. Using floristic data from 12 "landscapes" of 1 km2 we investigated the influence on diversity components of two simple and one complex measures of TV. While the standard deviation (SD) of altitude explained a high proportion of the variation in γ diversity (linear regression model, R2=0.63), the complex measure, SD of solar radiation explained it even better (R2=0.82). There were strong effects of TV on α and β diversity components at the microsite level, but only marginal increases of the diversity components at the habitat level. Further analyses revealed that the missing increase of the habitat level components was caused by differences between habitat groups and that only grassland diversity components increased significantly with TV. We conclude that TV at a landscape scale has strong effects on niche or microsite diversity and is an appropriate estimator of relative species richness in landscapes that are topographically heterogeneous and gradient dominated.  相似文献   

3.
Coastal ecosystems are often stressed by non-point source and cumulative effects that can lead to local-scale community homogenisation and a concomitant loss of large-scale ecological connectivity. Here we investigate the use of β-diversity as a measure of both community heterogeneity and ecological connectivity. To understand the consequences of different environmental scenarios on heterogeneity and connectivity, it is necessary to understand the scale at which different environmental factors affect β-diversity. We sampled macrofauna from intertidal sites in nine estuaries from New Zealand’s North Island that represented different degrees of stress derived from land-use. We used multiple regression models to identify relationships between β-diversity and local sediment variables, factors related to the estuarine and catchment hydrodynamics and morphology and land-based stressors. At local scales, we found higher β-diversity at sites with a relatively high total richness. At larger scales, β-diversity was positively related to γ-diversity, suggesting that a large regional species pool was linked with large-scale heterogeneity in these systems. Local environmental heterogeneity influenced β-diversity at both local and regional scales, although variables at the estuarine and catchment scales were both needed to explain large scale connectivity. The estuaries expected a priori to be the most stressed exhibited higher variance in community dissimilarity between sites and connectivity to the estuary species pool. This suggests that connectivity and heterogeneity metrics could be used to generate early warning signals of cumulative stress.  相似文献   

4.
Agro-pastoral decline in European mountain areas has recently caused changes to traditional landscapes with negative consequences on semi-natural grassland conservation and the associated biodiversity and ecosystem services. In the Italian Alps, grassland patches enclosed in a forest matrix are progressively disappearing. Two alpine valleys (Pesio and Pejo), having similar land-use history, were chosen as representative of management conditions of western and eastern Italian Alps, respectively. This study aims at interpreting the effect of abandonment on grassland patch plant diversity, considering land cover changes of the last 60 years, and assessing the role of ecological, topographic, management and landscape configuration on current grassland species richness. The total area of grassland patches has declined by 54 and 91 % at Pesio and at Pejo, respectively. Actual grassland patch species richness was mostly influenced by ecological factors, such as quantity of light, soil moisture and reaction, then by topographic features, especially slope, and finally by management intensity. Landscape factors exerted a slightly significant effect on plant diversity. In the two valleys, differences on management practices were detected. Even though in the western valley the conservation of several grazing activities contributed to slow down the process of patch reduction, many species-rich grasslands were generally under-grazed. Conversely, in the eastern valley, despite a denser road network, the stronger decline of grassland patch extension was linked to the hay making decline. At the same time, overuse of grassland patches near farms reduced plant species richness. As a conclusion, plant species richness was weakly related to the area of grassland patches and current and historical landscape configuration were of relatively lower importance than ecological, topographic and management factors, when evaluated at patch-level.  相似文献   

5.
The diversity of spring habitats can be determined not only by local environmental conditions, but also by large-scale biogeographical effects. The effects can differ across various groups of organisms. We compared α-, β- and γ-diversity patterns of bryophytes and vascular plants of (sub)alpine springs in three contrasting mountain ranges: Alps (Switzerland), Balkans (Bulgaria), Western Carpathians (Slovakia, Poland). We used univariate and multivariate statistics to test for the effects of pH, conductivity, altitude, slope, mean annual temperature and annual precipitation on diversity patterns of both taxonomic groups and compared diversity patterns among the regions for particular pH and conductivity classes. We identified acidophyte and basiphyte, calcifuge and calcicole species using species response modelling. All regions displayed significant relationship between conductivity and α-diversity of vascular plants. Bulgaria showed the highest α-diversity of vascular plants for the middle part of the conductivity gradient. For both taxonomic groups, the β-diversity in the middle part of gradient was highest in Swiss Alps. The total species pool was lowest in Bulgaria. The percentage of basiphyte and calcicole species was highest in the Alps. In (sub)alpine springs, mineral richness was a better determinant of vascular plant α-diversity than pH, and the extent of the alpine area did not coincide with α-diversity. Observed inter-regional differences in diversity patterns could be explained by the different proportion of limestone bedrock and different biogeographic history. The differences in α-diversity between both taxonomic groups are presumably result of the different rates of adaptation processes.  相似文献   

6.
To test the hypotheses that fruit-feeding nymphalid butterflies are randomly distributed in space and time, a community of fruit-feeding nymphalid butterflies was sampled at monthly intervals for one year by trapping 6690 individuals of 130 species in the canopy and understory of four forest habitats: primary, higraded, secondary, and edge. The overall species abundance distribution was well described by a lognormal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity and β-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (1 —β-diversity/γ-diversity), significant β-diversity existed in each dimension. Individual abundance and observed species richness was lower in the canopy than in the understory. However, rarefaction analysis and species accumulation curves revealed that canopy had higher species richness than understory. Observed species richness was roughly equal in all habitats, but individual abundance was much greater in edge, largely due to a single, specialist species. Rarefaction analysis and species accumulation curves showed that edge had significantly lower species richness than all other habitats. Samples from a single habitat, height and time contained only a small fraction of the total community species richness. This study demonstrates the feasibility, and necessity, of large-scale, long-term sampling in multiple dimensions for accurately measuring species richness and diversity in tropical forest communities. We discuss the importance of such studies in conservation biology.  相似文献   

7.
Abstract. Patterns of diversity were analyzed in a boreal coniferous forest and its strata (tree, shrub, herb and bryophyte layers): number of species per community — α-diversity, total species richness — γ-diversity, mean similarity — β-diversity, and mosaic diversity, a measure of complexity. These four measures of diversity consistently decreased from lower to upper vegetation layers. To study the effect of juveniles of larger life forms on diversity of lower layers, they were removed from the data and the measures of diversity reanalyzed. Number of species per community and mosaic diversity decreased substantially, but β-diversity did not change. So, the effect of juveniles on γ-diversity is due to the greater number of species per community. Multiple regression models revealed that the relationships between α-diversity and the environmental variables were the same for the whole forest and for the herb layer. Elevation and soil pH were the major variables explaining α-diversity in the whole community. Climate was the only environmental gradient related to species richness in all individual strata. Tree and herb richness values were negatively related to soil drainage and acidity, respectively. Species richness of the plant community was affected by environmental variability mostly through the herb layer. Various explanations of the observed diversity patterns included: environmental constraints, resource competition, generation time, and colonization processes.  相似文献   

8.
The impact of temporal changes in habitat availability and land use on the present genetic diversity of the grassland katydid species Metrioptera roeselii was investigated in an extensively used agricultural landscape (Lahn-Dill-Bergland, Germany) based on six microsatellite loci. By integrating spatial and temporal dimensions, this study contrasts to conventional approaches that usually record landscape changes at discrete points in time. Molecular data suggest little geographical substructuring of the species. Nevertheless, time-dependent effects on genetic diversity in terms of observed heterozygosity and allelic richness within subpopulations were detected by general linear models (GLM), explaining up to 82 and 13%, respectively. The results indicated that allelic richness was significantly reduced with higher rates of land-use change. Contrastingly, the level of heterozygosity even increased with increasing land-use change, if this rate increase was accompanied by a reduction in grassland amount, while with an increase of grassland amount the level of heterozygosity remained similar. Furthermore, depending on the study site, heterozygosity was differently affected by grassland age of sampled patches and of the surrounding. This is presumably induced by contrasting levels of heterozygosity in combination with differing modes of dispersal due to habitat availability and site-specific matrix effects. The loss of genetic diversity due to frequent land-use change might result in a reduced ability to adapt to landscape change, which is even more relevant in intensively used agricultural landscapes and in the course of climate change.  相似文献   

9.
Eighty-five patches of semi-natural grassland of varying size scattered in a agricultural landscape were investigated for their flora of vascular plants. Relationships between species richness and patch area, spatial isolation and local habitat conditions including heterogeneity were examined. Differences between single species and among groups of species defined by life-history traits were also investigated.
Area was shown to be an important determinant of species richness irrespective of habitat heterogeneity. Isolation in space and habitat heterogeneity also play significant roles. These results are consistent with results from a multitude of studies on fragments of ancient deciduous woodland in northern Europe, They are, however, contradictory to results from previous studies in grasslands within the same region. Seed mass and dispersal syndrome were poor predictors of the degree to which the species were affected by isolation of grassland patches. Seed mass deviation from community median could explain a small percentage of the variation in regional abundance. Logistic regression on species occurrences showed that few species are associated with large patches, and less than half seem to avoid isolated patches.  相似文献   

10.
Calcareous grasslands have become severely threatened habitats in Europe. The aim of this study was to investigate the changes in plant species richness, and functional and phylogenetic diversity in northern Estonian calcareous (alvar) grasslands resampled after 90 years of land-use change. Functional traits characterizing species that have benefited most from decreased habitat area and altered environmental conditions, and additional species that can potentially inhabit the remaining grassland patches were identified. Also changes in the relative amount of habitat-specific species were studied to detect a possible decrease in habitat integrity. Although grasslands in the studied region had lost most of their original area (~90 %), species richness had substantially increased due to invasion by more competitive, nutrient-demanding native species. Functional diversity generally increased, whereas phylogenetic diversity showed no response to altered conditions. Overall, these grasslands have lost their integrity as calcareous grassland habitat type in the region, because the relative amount of habitat-specific characteristic species has declined significantly. However, although the grasslands have transformed to a ‘hybrid’ habitat type and restoration to their previous state is likely not reasonable, such degraded species-rich grassland fragments can still be recognized as important habitats to preserve high local biodiversity and several characteristic species of calcareous grasslands. As current landscapes consist of an increasing number of hybrid and novel communities, new tools to supplement traditional conservation or restoration practices are necessary to recognize and maintain regions and habitats of high local biodiversity.  相似文献   

11.
We investigated the densities of the Redwing Francolinus levaillantii and Greywing Francolins F. africanus and the diversity of grassland birds in general along a land-use gradient in the highlands of Mpumalanga province, South Africa. Redwing Francolins cannot tolerate intensive grazing and frequent burning and are confined largely to unburnt, ungrazed grasslands. Their density and the species richness of grassland birds in general are negatively correlated with grazing intensity. Redwing populations drop to densities that cannot be utilised by hunters on a sustainable basis in grasslands that are grazed at even moderate levels or burned annually. Nineteen bird species (including five threatened species) were confined to essentially pristine grassland and were never observed in grazed/annually burned grasslands. The Greywing Francolin is more evenly distributed (although always at sub-utilisation densities) along the grassland land-use gradient, and its density is positively correlated with grazing intensity. There are two assemblages of grassland bird species that appear to be indicative of the intensity of habitat utilisation. Populations of grassland birds in the study area are becoming increasingly dependent on isolated patches of pristine grassland and are threatened by management involving annual burning and high stocking rates on a landscape scale.  相似文献   

12.
Widespread evidence shows that local species richness (α-diversity) loss hampers the biomass production and stability of ecosystems. β-Diversity, namely the variation of species compositions among different ecological communities, represents another important biodiversity component, but studies on how it drives ecosystem functioning show mixed results. We argue that to better understand the importance of β-diversity we need to consider it across contexts. We focus on three scenarios that cause gradients in β-diversity: changes in (i) abiotic heterogeneity, (ii) habitat isolation, and (iii) species pool richness. We show that across these scenarios we should not expect universally positive relationships between β-diversity, production, and ecosystem stability. Nevertheless, predictable relationships between β-diversity and ecosystem functioning do exist in specific contexts, and can reconcile seemingly contrasting empirical relationships.  相似文献   

13.
Species richness in ground water is still largely underestimated, and this situation stems from two different impediments: the Linnaean (i.e. the taxonomic) and the Wallacean (i.e. the biogeographical) shortfalls. Within this fragmented frame of knowledge of subterranean biodiversity, this review was aimed at (i) assessing species richness in ground water at different spatial scales, and its contribution to overall freshwater species richness at the continental scale; (ii) analysing the contribution of historical and ecological determinants in shaping spatial patterns of stygobiotic species richness across multiple spatial scales; (iii) analysing the role of β-diversity in shaping patterns of species richness at each scale analysed. From data of the present study, a nested hierarchy of environmental factors appeared to determine stygobiotic species richness. At the broad European scale, historical factors were the major determinants in explaining species richness patterns in ground water. In particular, Quaternary glaciations have strongly affected stygobiotic species richness, leading to a marked latitudinal gradient across Europe, whereas little effects were observed in surface fresh water. Most surface-dwelling fauna is of recent origin, and colonized this realm by means of post-glacial dispersal. Historical factors seemed to have also operated at the smaller stygoregional and regional scales, where different karstic and porous aquifers showed different values of species richness. Species richness at the small, local scale was more difficult to be explained, because the analyses revealed that point-diversity in ground water was rather low, and at increasing values of regional species richness, reached a plateau. This observation supports the coarse-grained role of truncated food webs and oligotrophy, potentially reflected in competition for food resources among co-occurring species, in shaping groundwater species diversity at the local scale. Alpha-diversity resulted decoupled from γ-diversity, suggesting that β-diversity accounted for the highest values of total species richness at the spatial scales analysed.  相似文献   

14.
Between-group α- and β-diversity differences were derived from species-area relationships fitted to field data. The accuracy of spatial richness variation predictions based on area size was also checked. The log-log model (log S = c + z log A) was found to be the best-fit linear model, with slopes (z) ranging from 0.089 to 0.142. Between-group comparisons of z (slope) and q (intercept) parameters, using the S = q + cAz curvilinear regression model, corroborated early results, indicating a lower β-diversity (slope) for Scarabaeinae than for Geotrupinae and Aphodiinae. The latter group, probably more sensitive to environmental heterogeneity, should contribute more to species richness in large areas. α-Diversity is greater for Aphodiinae, more relevant to local diversity (1 km2), than for Scarabaeinae and considerably greater for these two groups than for Geotrupinae. As earlier results show that the richness of a single dung pat is rather more a function of the Scarabaeinae species pool, richness on dung pat scales is probably due more to the between-dropping mobile Scarabaeinae, while Aphodiinae contribute mainly to local and regional pool richness. Nearly 88 % of the total richness variance is explained by area size. This percentage decreases to 37 % when the spatial structure of area size and species number are extracted. The corresponding figures for Scarabaeinae, Aphodiinae and Geotrupinae are 44, 22 and 31 %, respectively.  相似文献   

15.
Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.  相似文献   

16.
Various ecological processes influence patterns of species diversity at multiple spatial scales. One process that is potentially important but rarely considered is community assembly. I assembled model communities using species pools of differing size to examine how the history of community assembly may affect multi-scale diversity patterns. The model contained three scales at which diversity could be measured: local community, metacommunity, and species pool. Local species saturation occurred, as expected from the competition and predation built in the model. However, local communities did not become resistant to invasions except when the species pool was very small. Depending on dispersal rate and trophic level, the larger the species pool, the harder it was to predict which species invades which local community at a given time. Consequently, local-community dissimilarity maintained by assembly history increased linearly with pool size, even though local diversity was decoupled from pool size. These results have two implications for multi-scale diversity patterns. First, assembly history may provide an explanation for scale-dependent relationships between local and regional diversity: assembly causes the relationship to be curvilinear at one scale (local community), while linear at another (metacommunity). Second, assembly history influences how -diversity is partitioned into - and -diversity: assembly causes the relative contribution of to increase with pool size. Overall, this study suggests that community assembly history interacts with species pool size to regulate multi-scale patterns of species diversity.  相似文献   

17.

Aim

The local‐ and regional‐based forms of anthropogenic change reducing grassland diversity are generally identified, but these scale‐dependent processes tend to co‐occur with unclear interactive effects. Here, we explicitly test how common local and regional perturbations simultaneously affect plant alpha and beta diversity in a multiyear community assembly experiment using fragments of grassland habitat of various sizes. We hypothesized that local disturbances and decreasing patch size would interact, suppressing local diversity while homogenizing composition among patches.

Location

North America.

Methods

We conducted a three‐year grassland assembly experiment, factorially manipulating local perturbation (nitrogen addition and mowing) and patch area for 36 patches over 13 ha. We quantified the individual and interactive effects of these local and regional factors on plant alpha and beta diversity within (quadrat scale) and among patches (patch scale). We also used a null model approach to disentangle between stochastic‐ and niche‐based assembly mechanisms.

Results

We detected a gradient of assembly outcomes driven by two non‐interacting factors—the effects of N fertilization on alpha (negative) and beta (positive) diversity regardless of spatial scale and the scale‐dependant effect of increasing patch size on alpha (positive) and beta (positive) diversity. These effects unfolded over time, with the constraints on richness and composition shifting from dispersal‐based during the first sampling year to perturbation‐and size‐based factors at year two and three. Fertilization effects were driven by a mixture of deterministic (i.e., selection at the species level) and stochastic (i.e., random extinctions) processes resulting in a decline in local richness but an increase in spatial heterogeneity in species composition. Area appeared to influence alpha diversity mainly via stochastic “sampling effect”—larger patches represented a larger sample of the regional pool. Niche‐based processes, however, led to convergence in beta diversity among smaller patches driving a positive overall effect of area on beta diversity.

Main conclusion

Our results illustrate how diversity regulation in contemporary grasslands can be simultaneously shaped by local and regional factors acting additively but via contrasting assembly mechanisms that operate at different spatial and temporal scales.
  相似文献   

18.
Aim  Landscape structure influences the distribution of animals, altering their movements and their ability to reach habitat patches. We analysed the spatial patterns of dung beetle species diversity in three differently structured natural landscapes in a Mediterranean protected area in the centre of the Iberian Peninsula.
Location  Cabañeros National Park, Central Spain.
Methods  Diversity components within (α) and among (β) the three main vegetation types in the reserve were compared by using a hierarchical nested design. These were forests, scrublands and grasslands embedded in three different landscapes, where each was the most dominant and structurally connected habitat.
Results  Species richness of grassland habitat did not vary across landscapes, but forest habitat showed lower species richness in the grassland-dominated landscape. Scrubland was the least species-rich habitat, but here again there was no significant variation across landscapes. However, in all cases, there was a significant influence of habitat context (configuration of habitat patches within landscape matrix) on similarity of species composition. These tended to be more similar to the dominant landscape matrix where they were embedded, rather than to the same habitat type in other landscapes. Additive partitioning of diversity showed higher than expected values of β in all landscapes, which indicated a structured response. Highest values of β in the grassland-dominated landscape suggest that this was the least connected landscape for dung beetles.
Main conclusions  Our results suggest that in homogeneous conditions of climate and trophic resources, landscape structure may well be more important than habitat type as a determinant of dung beetle distribution in the Mediterranean.  相似文献   

19.
While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.  相似文献   

20.
Island biogeographical theory predict species richness to increase with habitat area and to decrease with isolation from colonisation sources. This theory has been applied to habitat fragments, and the predictions tested and found valid in empirical studies on fragments of deciduous woodland in northern Europe. However, previous results on fragments of grassland have been ambiguous. In the present study the species richness of vascular plants was investigated in 63 patches of grassland and heathland scattered in an agricultural and forested landscape using multiple linear regression. The relationship between species richness and patch area, isolation and local habitat conditions including heterogeneity were examined. Area was an important determinant of species richness, both in the full data set and in a subset of small habitat patches. In contrast, spatial isolation and habitat heterogeneity were not important factors determining species richness. Differences in soil acidity were accounting for a large proportion of the variance in species richness. This result is probably due to differences in the size of the regional species pools of grasslands with different levels of soil pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号