首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Surfactant protein (SP) B is an essential component of the pulmonary surfactant complex, which participates in reducing the surface tension across the alveolar air-liquid interface. The Eustachian tube (ET) connects the upper respiratory tract to the middle ear, serving as an intermittent airway between the pharynx and the middle ear. Recently, we described the expression of SP-A and SP-D in the ET, suggesting their role in middle ear host defense. Our present aim was to detect whether the expression of SP-B is evident in the porcine ET. With Northern blot analysis, RT-PCR, and in situ hybridizations, SP-B mRNA was identified and localized in the ET epithelium. The cellular localization of SP-B was revealed with immunohistochemistry, electron microscopy, and immunoelectron microscopy. The protein was found in the secretory granules of epithelial cells and also attached to the microvilli at the luminal side of these cells. The SP-B immunoreactivity of aggregates isolated from ET lavage fluid was similar to that isolated from bronchoalveolar lavage fluid. We conclude that there are specialized cells in the ET epithelium expressing and secreting SP-B and propose that SP-B may facilitate normal opening of the tube and mucociliary transport.  相似文献   

2.
The inability to open the collapsible Eustachian tube (ET) has been related to the development of chronic otitis media. Although ET dysfunction may be due to anatomic and/or mechanical abnormalities, the precise mechanisms by which these structural properties alter ET opening phenomena have not been investigated. Previous investigations could only speculate on how these structural properties influence the tissue deformation processes responsible for ET opening. We have, therefore, developed a computational technique that can quantify these structure-function relationships. Cross-sectional histological images were obtained from eight normal adult human subjects, who had no history of middle ear disease. A midcartilaginous image from each subject was used to create two-dimensional finite element models of the soft tissue structures of the ET. ET opening phenomena were simulated by applying muscle forces on soft tissue surfaces in the appropriate direction and were quantified by calculating the resistance to flow (R(v)) in the opened lumen. A sensitivity analysis was conducted to determine the relative importance of muscle forces and soft-tissue elastic properties. Muscle contraction resulted in a medial-superior rotation of the medial lamina, stretching deformation in the Ostmann's fatty tissue, and lumen dilation. Variability in baseline R(v) values correlated with tissue size, whereas the functional relationship between R(v) and a given mechanical parameter was consistent in all subjects. ET opening was found to be highly sensitive to the applied muscle forces and relatively insensitive to cartilage elastic properties. These computational models have, therefore, identified how different tissue elements alter ET opening phenomena, which elements should be targeted for treatment, and the optimal mechanical properties of these tissue constructs.  相似文献   

3.
Airway reopening mechanics depend on surfactant physicochemical properties. During reopening, the progression of a finger of air down an airway creates an interface that is continually expanding into the bulk fluid. Conventional surfactometers are not capable of evaluating physicochemical behavior under these conditions. To study these aspects, we investigated the pressure required to push a semi-infinite bubble of air down a fluid-filled cylindrical capillary of radius R. The ionic surfactant SDS and pulmonary surfactant analogs L-alpha-dipalmitoylphosphatidylcholine and Infasurf were investigated. We found that the nonequilibrium adsorption of surfactant can create a large nonequilibrium normal stress and a surface shear stress (Marangoni stress) that increase the bubble pressure. The nonphysiological surfactant SDS is capable of eliminating the normal stress and partially reducing the Marangoni stress. The main component of pulmonary surfactant, L-alpha-dipalmitoylphosphatidylcholine, is not capable of reducing either stress, demonstrating slow adsorption properties. The clinically relevant surfactant Infasurf is shown to have intermediate adsorption properties, such that the nonequilibrium normal stress is reduced but the Marangoni stress remains large. Infasurf's behavior suggests that an optimal surfactant solution will have sorption properties that are fast enough to reduce the reopening pressure that may damage airway wall epithelial cells but slow enough to maintain the Marangoni stress that enhances airway stability.  相似文献   

4.
Composition, surface activity and effects on pressure-volume (P-V) mechanics are examined for lavaged calf lung surfactant (LS) and the clinical exogenous surfactants Infasurf and Survanta. Lavaged LS and Infasurf had closely-matching compositions of phospholipids and neutral lipids. Survanta had higher levels of free fatty acids and triglycerides consistent with its content of added synthetic palmitic acid and tripalmitin. Infasurf and Survanta both contained less total protein than LS because of extraction with hydrophobic solvents, but the total protein content relative to phospholipid in Survanta was about 45% lower than in Infasurf. This difference was primarily due to surfactant protein (SP)-B, which was present by ELISA at a mean weight percent relative to phospholipid of 1.04% in LS, 0.90% in Infasurf, and 0.044% in Survanta. Studies on component fractions separated by gel permeation chromatography showed that SP-B was a major contributor to the adsorption, dynamic surface activity, and P-V mechanical effects of Infasurf, which approached whole LS in magnitude. Survanta had lower adsorption, higher minimum surface tension, and a smaller effect on surfactant-deficient P-V mechanics consistent with minimal contributions from SP-B. Addition of 0.05% by weight of purified bovine SP-B to Survanta did not improve surface or physiological activity, but added 0.7% SP-B improved adsorption, dynamic surface tension lowering, and P-V activity to levels similar to Infasurf. The SP-B content of lung surfactants appears to be a crucial factor in their surface activity and efficacy in improving surfactant-deficient pulmonary P-V mechanics.  相似文献   

5.
Mucins are important glycoproteins in the mucociliary transport system of the middle ear and Eustachian tube. Little is known about mucin expression within this system under physiological and pathological conditions. This study demonstrated the expression of MUC5B, MUC5AC, MUC4, and MUC1 in the human Eustachian tube, whereas only MUC5B mucin expression was demonstrated in noninflamed middle ears. MUC5B and MUC4 mucin genes were upregulated 4.2- and 6-fold, respectively, in middle ears with chronic otitis media (COM) or mucoid otitis media (MOM). This upregulation of mucin genes was accompanied by an increase of MUC5B- and MUC4-producing cells in the middle ear mucosa. Electron microscopy of the secretions from COM and MOM showed the presence of chainlike polymeric mucin. These data indicate that the epithelium of the middle ear and Eustachian tube expresses distinct mucin profiles and that MUC5B and MUC4 mucins are highly produced and secreted in the diseased middle ear. These mucins may form thick mucous effusion in the middle ear cavity and compromise the function of the middle ear.  相似文献   

6.
7.
Experiments were designed to determine the influence of endothelin A (ET(A)) receptors on the pressor response to acute environmental stress in Dahl salt-resistant (DR) and Dahl-sensitive (DS) rats. Mean arterial pressure (MAP) was chronically monitored by telemetry before and after treatment with the selective ET(A) receptor antagonist ABT-627. Rats were restrained and subjected to pulsatile air jet stress (3 min). In untreated animals, the total pressor response (area under the curve) to acute stress was not different between DR vs. DS rats (8.1 +/- 1.7 vs. 15.6 +/- 2.6 mmHg x 3 min, P = 0.10). Conversely, treatment with ABT-627 potentiated the total pressor response only in DR rats (36.3 +/- 6.2 vs. 22.6 +/- 5.9 mmHg x 3 min, DR vs. DS, P < 0.05). Treatment with ABT-627 allowed greater responses in anesthetized DR rats to exogenous phenylephrine (1-4 microg/kg) during ganglionic blockade (P < 0.05) and produced a significant increase in plasma norepinephrine at baseline and during stress in conscious DR rats compared with untreated animals (P < 0.05). ET(A) receptor blockade had no effect on these responses in DS rats. Our results suggest that endothelin-1 can inhibit alpha-adrenergic-mediated effects in DR, but not DS rats, consistent with the hypothesis that ET(A) receptor activation functions to reduce sympathetic nerve activity and responses in vascular smooth muscle to sympathetic stimulation.  相似文献   

8.
Surfactant protein (SP) A and SP-D are collectins that have roles in host defense. The Eustachian tube (ET) maintains the patency between the upper airways and the middle ear. Dysfunction of local mucosal immunity in ET may predispose infants to recurrent otitis media. We recently described preliminary evidence of the expression of SP-A and SP-D in the ET. Our present aim was to establish the sites of SP-A and SP-D expression within the epithelium of the ET in vivo. With in situ hybridization, electron microscopy, and immunoelectron microscopy, the cells responsible for SP-A and SP-D expression and storage were identified. SP-A expression was localized within the ET epithelium, and the protein was found in the electron-dense granules of microvillar epithelial cells. Being concentrated in the epithelial lining, only a few cells revealed intracellular SP-D, and it was not associated with granules. The SP-A and SP-D immunoreactivities in ET lavage fluid, as shown by Western blot analyses, were similar to those in bronchoalveolar lavage fluid. We propose that there are specialized cells in the ET epithelium expressing and secreting SP-A and SP-D. SP-A and SP-D may be important for antibody-independent protection of the middle ear against infections.  相似文献   

9.
Inhalation of endothelin (ET)-A receptor antagonists has been shown to improve gas exchange in experimental acute lung injury (ALI) but may induce side effects by increasing circulating ET-1 levels. We investigated whether the inhaled ET(A) receptor antagonist, LU-135252, at low doses, improves gas exchange without affecting ET-1 plasma concentrations and lung injury in an animal model of ALI. Twenty-two piglets were examined in a prospective, randomized, controlled study. In anesthetized animals, ALI was induced by surfactant depletion. Animals received either LU-135252 at a dose of 0.3 mg/kg during 20 mins (LU group; n = 11), or nebulization of saline buffer (control group; n = 11). The Mann-Whitney U test was used to compare groups (P < 0.05). In the LU group, arterial partial pressure of oxygen (PaO2) and mean pulmonary artery pressure (MPAP) improved compared with the control group (PaO2, 319 +/- 44 mm Hg vs. 57 +/- 3 mm Hg; MPAP, 32 +/- 2 mm Hg vs. 41 +/- 2 mm Hg; values at 6 hrs after induction of ALI; P < 0.05). Mean arterial pressure and cardiac output were not different between groups. ET-1 plasma concentrations increased from 0.96 +/- 0.06 fmol/ml after induction of ALI to a maximum of 1.17 +/- 0.09 fmol/ml at 3 hrs after ALI onset in the LU group and did not differ significantly from the control group (1.21 +/- 0.08 fmol/ml, not significant). On histologic examination, we found no differences in total lung injury score between groups. However, the LU group revealed significantly reduced interstitial inflammation and hemorrhage (P < 0.05 vs. control group). In this animal model of ALI, inhalation of LU-135252 at a dose of 0.3 mg/kg induced a significant and sustained improvement in gas exchange, whereas there were no changes in ET-1 plasma concentrations. Furthermore, our data indicate a trend toward decreased pulmonary inflammation in the group receiving the inhaled ET(A) receptor antagonist.  相似文献   

10.
We have recently demonstrated that chronic infusion of exogenous ANG II, which induces blood pressure elevation, attenuates renal medullary endothelin B (ET(B)) receptor function in rats. Moreover, this was associated with a reduction of ET(B) receptor expression in the renal inner medulla. The aim of this present work was to investigate the effect of a physiological increase in endogenous ANG II (low-salt diet) on the renal ET system, including ET(B) receptor function. We hypothesized that endogenous ANG II reduces renal medullary ET(B) receptor function during low-salt intake. Rats were placed on a low-salt diet (0.01-0.02% NaCl) for 2 wk to allow an increase in endogenous ANG II. In rats on normal-salt chow, the stimulation of renal medullary ET(B) receptor by ET(B) receptor agonist sarafotoxin 6c (S6c) causes an increase in water (3.6 ± 0.4 from baseline vs. 10.5 ± 1.3 μl/min following S6c infusion; P < 0.05) and sodium excretion (0.38 ± 0.06 vs. 1.23 ± 0.17 μmol/min; P < 0.05). The low-salt diet reduced the ET(B)-dependent diuresis (4.5 ± 0.5 vs. 6.1 ± 0.9 μl/min) and natriuresis (0.40 ± 0.11 vs. 0.46 ± 0.12 μmol/min) in response to acute intramedullary infusion of S6c. Chronic treatment with candesartan restored renal medullary ET(B) receptor function; urine flow was 7.1 ± 0.9 vs. 15.9 ± 1.7 μl/min (P < 0.05), and sodium excretion was 0.4 ± 0.1 vs. 1.1 ± 0.1 μmol/min (P < 0.05) before and after intramedullary S6c infusion, respectively. Receptor binding assays determined that the sodium-depleted diet resulted in a similar level of ET(B) receptor binding in renal inner medulla compared with rats on a normal-salt diet. Candesartan reduced renal inner medullary ET(B) receptor binding (1,414 ± 95 vs. 862 ± 50 fmol/mg; P < 0.05). We conclude that endogenous ANG II attenuates renal medullary ET(B) receptor function to conserve sodium during salt deprivation independently of receptor expression.  相似文献   

11.
The proposed in vitro model for studying the alveolar surface layer of the lungs enables one to investigate the surface intermolecular forces which influence the stability of the alveolus. The general role for the stability of the alveolus belongs to the phospholipids in the alveolar surfactant and predominantly to their main component dipalmitoylphosphatidylcholine (DPPC). The aim of the study was to investigate the rheological behavior of DPPC and exogenous surfactant preparations used in neonatal clinical practice. Data for the rheological behavior of the solutions of the commercially available surfactants, Infasurf, Exosurf and Survanta, as well as of DPPC (their main phospholipid component) at shear rates from 0.024 to 94.5 s(-1) under steady and transient flow conditions at 23 degrees C were obtained. Infasurf and Exosurf showed Newtonian rheological behavior, while Survanta revealed the shear-thinning behavior of a non-Newtonian pseudoplastic fluid. The rheological properties of aqueous solutions of DPPC containing 0.14 M NaCl at concentrations from 100 and 630 microg/ml of phospholipid (chosen from the dependence of the probability for bilayer film formation) were studied. Differences observed in the rheological properties of the exogenous surfactants were interpreted on the basis of their composition, the presence of other phospholipid components, certain additives and surfactant proteins, as well as the bulk structures formed from them. The relevance of the results for the delivery of exogenous surfactants and their spreading in replacement therapy is discussed.  相似文献   

12.
Middle ear barotrauma during flight is a painful disorder experienced by passengers who cannot properly regulate their middle ear pressure in response to the changing cabin pressures during ascent and descent. Previous reports emphasized the important role of poor eustachian tube function in disease pathogenesis but paid little attention to other moderating factors. Here we describe a mathematical model of middle ear pressure regulation and simulate the pressure response to the changes in cabin pressure experienced over typical flights. The results document buffering mechanisms that decrease the requisite efficiency of active, muscle-assisted eustachian tube opening for disease-free flight. These include the relative difference between destination and departure elevations and the ratio of maximum tympanic membrane volume displacement to middle ear volume, where greater absolute values require lesser efficiencies for disease-free flight. Also, the specific type of functional deficit is important since ears with a completely obstructed eustachian tube can be less susceptible to barotrauma than those with a eustachian tube that passively opens but fails to dilate in response to muscle activity. These buffering systems can explain why some children and adults with poor eustachian tube function do not experience middle ear barotrauma.  相似文献   

13.
Surfactant proteins A and D are collectins which are considered to play an important role in the innate immunity of lungs. Our aim was to investigate whether surfactant protein A or D is expressed in the porcine Eustachian tube originating from the upper airways. Both surfactant proteins A and D were present in the epithelial cells of the Eustachian tube, as shown by strong immunostaining. Using RT-PCR and Northern hybridization, these collectins were detected in the Eustachian tube. The present study is the first report demonstrating surfactant protein gene expression in the Eustachian tube. Surfactant proteins A and D may be important in the antibody-independent protection of the middle ear.  相似文献   

14.
The current study was undertaken to address responsiveness of skeletal muscle mitochondrial electron transport chain (ETC) activity to weight loss (WL) and exercise in overweight or obese, sedentary volunteers. Fourteen middle-aged participants (7 male/7 female) had assessments of mitochondrial ETC activity and mitochondrial (mt)DNA in vastus lateralis muscle, obtained by percutaneous biopsy, before and after a 16-wk intervention. Mean WL was 9.7 (1.5%) and the mean increase in Vo(2 max) was [means (SD)] 21.7 (3.7)%. Total ETC activity increased significantly, from 0.13 (0.02) to 0.19 (0.03) U/mU creatine kinase (CK; P < 0.001). ETC activity was also assessed in mitochondria isolated into subsarcolemmal (SSM) and intermyofibrillar (IMF-M) fractions. In response to intervention, there was a robust increase of ETC activity in SSM (0.028 (0.007) to 0.046 (0.011) U/mU CK, P < 0.001), and in IMF-M [0.101 (0.015) to 0.148 (0.018) U/mU CK, P < 0.005]. At baseline, the percentage of ETC activity contained in the SSM fraction was low and remained unchanged following intervention [19 (3) vs. 22 (2)%], despite the increase in ETC activity. Also, muscle mtDNA content did not change significantly [1665 (213) vs. 1874 (214) mtDNA/nuclear DNA], denoting functional improvement rather than proliferation of mitochondria as the principal mechanism of enhanced ETC activity. Increases in ETC activity were correlated with energy expenditure during exercise sessions, and ETC activity in SSM correlated with insulin sensitivity after adjustment for Vo(2 max). In summary, skeletal muscle ETC activity is increased by WL and exercise in previously sedentary obese men and women. We conclude that improved skeletal muscle ETC activity following moderate WL and improved aerobic capacity contributes to associated alleviation of insulin resistance.  相似文献   

15.
At 110-111 days gestation, instrumented fetal sheep were administered saline or dexamethasone (2.2 microgram. kg(-1). h(-1) iv) for 48 h. Measurement of fetal blood pressure showed a greater increase in dexamethasone-treated (n = 6) compared with control (n = 5) fetuses (7.3 +/- 2.3 vs. 0.6 +/- 2.3 mmHg, P < 0.05). Fetuses were delivered by cesarean section, and the femoral muscle and brain were obtained under halothane anesthesia. Femoral and middle cerebral arteries (approximately 320-micrometer internal diameter) were evaluated using wire myography. Sensitivity to KCl (2.5-125 mM) and the magnitude of the maximal vasoconstriction to 125 mM K(+) were similar in femoral and middle cerebral arteries from dexamethasone-treated vs. control fetuses. Acetylcholine-induced vasorelaxation was similar in femoral arteries from control and dexamethasone-treated fetuses. Middle cerebral arteries did not relax to acetylcholine. Sensitivity to endothelin-1 (ET-1; 0.1 pM-0.1 microM) and magnitude of the ET-1-induced vasoconstriction were greater in femoral arteries from dexamethasone-treated vs. control fetuses (P < 0.05). Autoradiographical studies with receptor-specific ligands demonstrated increased ET(A)-receptor binding, the principal receptor subtype, in femoral muscle vessels (P < 0.001) but decreased ET(A)-receptor binding in middle cerebral arteries (P < 0.01) from dexamethasone-treated compared with control fetuses. Relatively little ET(B)-receptor binding was evident in all tissues examined. We conclude that hyperreactivity to ET-1, due to increased ET(A)-receptor binding, may be involved in the dexamethasone-induced increase in peripheral vascular resistance in fetal sheep in vivo.  相似文献   

16.
Cardiovascular responses of heart transplant patients to exercise training   总被引:2,自引:0,他引:2  
Orthotopic heart transplantation (OHT) represents an effective alternative for individuals with end-stage heart disease. The current literature reports only the responses of OHT patients to greater than or equal to 4 mo of exercise training (ET) and frequently lacks adequate controls. Most programs currently treating OHT patients usually provide 6-12 wk of ET. This study describes the effects of a 10-wk supervised ET program in 12 male OHT patients and 5 other male OHT patients who served as a comparison group. Graded exercise tests were performed before and after ET. After ET, maximal O2 consumption was significantly greater for the ET group than the comparison group (P less than 0.05) and the mean increase in peak heart rate was 18 +/- 4 and 6 +/- 4 (SE) min-1 for ET and comparison groups, respectively (P less than 0.05). Maximal ventilation was also significantly greater for the ET group at after ET, while resting heart rate and blood pressure and peak blood pressure, O2 pulse, respiratory rate, and ventilatory equivalents for O2 and CO2 were not significantly changed. We conclude that after OHT a 10-wk ET program improves maximal O2 consumption and, by improving peak heart rate, improves O2 delivery.  相似文献   

17.
Cardiovascular diseases are characterized by insulin resistance and elevated endothelin (ET)-1 levels. Furthermore, ET-1 induces insulin resistance. To elucidate this mechanism, six healthy subjects were studied during a hyperinsulinemic euglycemic clamp during infusion of (the ET-1 precursor) big ET-1 alone or after ET(A)- or ET(B)-receptor blockade. Insulin levels rose after big ET-1 with or without the ET(B) antagonist BQ-788 (P < 0.05) but were unchanged after the ET(A) antagonist BQ-123 + big ET-1. Infused glucose divided by insulin fell after big ET-1 with or without BQ-788 (P < 0.05). Insulin and infused glucose divided by insulin values were normalized by ET(A) blockade. Mean arterial blood pressure rose during big ET-1 with or without BQ-788 (P < 0.001) but was unchanged after BQ-123. Skeletal muscle, splanchnic, and renal blood flow responses to big ET-1 were abolished by BQ-123. ET-1 levels rose after big ET-1 (P < 0.01) in a similar way after BQ-123 or BQ-788, despite higher elimination capacity after ET(A) blockade. In conclusion, ET-1-induced reduction in insulin sensitivity and clearance as well as splanchnic and renal vasoconstriction are ET(A) mediated. ET(A)-receptor stimulation seems to inhibit the conversion of big ET-1 to ET-1.  相似文献   

18.
Otitis media results when the eustachian tube fails to adequately ventilate the middle ear. A surface tension-lowering substance may be required for normal tube opening, especially in young children with poorly developed naso-pharyngeal musculature. We report here that rat eustachian tube epithelium synthesizes disaturated phosphatidylcholine, which is recognized as the surface tension-lowering substance of pulmonary surfactant.  相似文献   

19.
We tested the hypothesis that dehydration exacerbates reductions of middle cerebral artery blood velocity (MCAv) and alters cerebrovascular control during standing after heavy resistance exercise. Ten males participated in two trials under 1) euhydration (EUH) and 2) dehydration (DEH; fluid restriction + 40 mg furosemide). We recorded finger photoplethysmographic arterial pressure and MCAv (transcranial Doppler) during 10 min of standing immediately after high-intensity leg press exercise. Symptoms (e.g., lightheadedness) were ranked by subjects during standing (1-5 scale). Low-frequency (LF) oscillations of mean arterial pressure (MAP) and mean MCAv were calculated as indicators of cerebrovascular control. DEH reduced plasma volume by 11% (P = 0.002; calculated from hemoglobin and hematocrit). During the first 30 s of standing after exercise, subjects reported greater symptoms during DEH vs. EUH (P = 0.05), but these were mild and resolved at 60 s. While MAP decreased similarly between conditions immediately after standing, MCAv decreased more with DEH than EUH (P = 0.02). With prolonged standing under DEH, mean MCAv remained below baseline (P ≤ 0.01), and below EUH values (P ≤ 0.05). LF oscillations of MAP were higher for DEH at baseline and during the entire 10 min of stand after exercise (P ≤ 0.057), while LF oscillations in mean MCAv were distinguishable only at baseline and 5 min following stand (P = 0.05). Our results suggest that mean MCAv falls below a "symptomatic threshold" in the acute phase of standing after exercise during DEH, although symptoms were mild and transient. During the prolonged phase of standing, increases in LF MAP and mean MCAv oscillations with DEH may help to maintain cerebral perfusion despite absolute MCAv remaining below the symptomatic threshold.  相似文献   

20.
Endothelin-1 (ET-1) has been reported to induce pulmonary vasoconstriction via either ET(A) or ET(B) receptors, and vasorelaxation after ET-1 injection has been observed. Our study investigated the effects of ET-1 in isolated rabbit lungs, which were studied at basal tone (part I) and after preconstriction (U-46619; part II). Pulmonary arterial pressure (PAP) and lung weight gain were monitored continuously. In part I, ET-1 (10(-8) M; n = 6; control) was injected after pretreatment with the ET(A)-receptor antagonist BQ-123 (10(-6) M; n = 6) or the ET(B)-receptor antagonist BQ-788 (10(-6) M; n = 6). The same protocol was carried out in part II after elevation of pulmonary vascular tone. ET-1 induced an immediate PAP increase (DeltaPAP 4.3 +/- 0.4 mmHg at 10 min) that was attenuated by pretreatment with BQ-123 (P < 0.05 at 10 min and P < 0.01 thereafter) and that was more pronounced after BQ-788 (P < 0.01 at 10 min and P < 0.001 thereafter). In part II, ET-1 induced an immediate rise in PAP with a maximum after 5 min (DeltaPAP 6.3 +/- 1.4 mmHg), leveling off at DeltaPAP 3.2 +/- 0.2 mmHg after 15 min. Pretreatment with BQ-123 failed to attenuate the increase. BQ-788 significantly reduced the peak pressure at 5 min (0.75 +/- 0.4 mmHg; P < 0.001) as well as the plateau pressure thereafter (P < 0.01). We conclude that ET-1 administration causes pulmonary vasoconstriction independent of basal vascular tone, and, at normal vascular tone, the vasoconstriction seems to be mediated via ET(A) receptors. BQ-788 treatment resulted in even more pronounced vasoconstriction. After pulmonary preconstriction, ET(A) antagonism exerted no effects on PAP, whereas ET(B) antagonism blocked the PAP increase. Therefore, ET-1-induced pulmonary vasoconstriction is shifted from an ET(A)-related to an ET(B)-mediated mechanism after pulmonary vascular preconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号