首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), has been reported to possess anti-inflammatory activity in activated monocytes/macrophages. In this study, we investigated the effect of 15d-PGJ(2) on the lipopolysaccharide (LPS)-induced expression of chemokine mRNAs, especially macrophage inhibitory protein (MIP)-2 (CXCL2), in mouse peritoneal macrophages. The inhibitory actions of the natural PPARgamma ligands, 15d-PGJ(2) and prostaglandin A1 (PGA1), on the expression of RANTES (regulated upon activation, normal T expressed and secreted; CCL5), MIP-1beta (CCL4), MIP-1alpha (CCL3), IFN-gamma-inducible protein 10 kilodaltons (IP-10; CXCL10) and monocyte chemoattractant protein-1 (MCP-1; CCL2) mRNA in LPS-treated cells were stronger than those of the synthetic PPARgamma ligands troglitazone and ciglitazone. However, 15d-PGJ(2) enhanced the expression of LPS-induced MIP-2 (CXCL2) mRNA. A specific PPARgamma antagonist (GW9662) had no effect on the inhibitory action of 15d-PGJ(2) and PGA1 in LPS-induced chemokine mRNA expression and on the synergistic action of 15d-PGJ(2) in LPS-induced MIP-2 (CXCL2) expression. Moreover, LPS itself reduced the expression of PPARgamma. Although the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was remarkable, the production of MIP-2 (CXCL2) in cells treated with 15d-PGJ(2) and LPS did not increase compared to the production in cells treated with LPS alone. The synergistic action of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) mRNA expression was dependent on the activation of nuclear factor-kappaB (NF-kappaB), and 15d-PGJ(2) increased the phosphorylation of p38 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in cells stimulated with LPS. These results suggest that the synergistic effect of 15d-PGJ(2) on LPS-induced MIP-2 (CXCL2) expression is PPARgamma-independent, and is mediated by the p38 and SAPK/JNK pathway in mitogen-activated protein kinase signaling pathways, which activates NF-kappaB. Our data may give more insights into the different mechanisms contrary to the anti-inflammatory effect of 15d-PGJ(2) on the expression of chemokine genes.  相似文献   

3.
Ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as 15-deoxy-12,14-PGJ2 (15d-PGJ2), have been proposed as a new class of anti-inflammatory compounds because 15d-PGJ2 was able to inhibit the induction of inflammatory response genes such as inducible NO synthase (iNOS) and TNF (TNF-alpha) in a PPAR-dependent manner in various cell types. In primary astrocytes, the anti-inflammatory effects (inhibition of TNF-alpha, IL-1beta, IL-6, and iNOS gene expression) of 15d-PGJ2 are observed to be independent of PPARgamma. Overexpression (wild-type and dominant-negative forms) of PPARgamma and its antagonist (GW9662) did not alter the 15d-PGJ2-induced inhibition of LPS/IFN-gamma-mediated iNOS and NF-kappaB activation. The 15d-PGJ2 inhibited the inflammatory response by inhibiting IkappaB kinase activity, which leads to the inhibition of degradation of IkappaB and nuclear translocation of p65, thereby regulating the NF-kappaB pathway. Moreover, 15d-PGJ2 also inhibited the LPS/IFN-gamma-induced PI3K-Akt pathway. The 15d-PGJ2 inhibited the recruitment of p300 by NF-kappaB (p65) and down-regulated the p300-mediated induction of iNOS and NF-kappaB luciferase reporter activity. Coexpression of constitutive active Akt and PI3K (p110) reversed the 15d-PGJ2-mediated inhibition of p300-induced iNOS and NF-kappaB luciferase activity. This study demonstrates that 15d-PGJ2 suppresses inflammatory response by inhibiting NF-kappaB signaling at multiple steps as well as by inhibiting the PI3K/Akt pathway independent of PPARgamma in primary astrocytes.  相似文献   

4.
Feedback control of cyclooxygenase-2 expression through PPARgamma   总被引:5,自引:0,他引:5  
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostaglandins (PG), plays a key role in inflammation, tumorigenesis, development, and circulatory homeostasis. The PGD(2) metabolite 15-deoxy-Delta(12, 14) PGJ(2) (15d-PGJ(2)) was identified as a potent natural ligand for the peroxisome proliferator-activated receptor-gamma (PPARgamma). PPARgamma expressed in macrophages has been postulated as a negative regulator of inflammation and a positive regulator of differentiation into foam cell associated with atherogenesis. Here, we show that 15d-PGJ(2) suppresses the lipopolysaccharide (LPS)-induced expression of COX-2 in the macrophage-like differentiated U937 cells but not in vascular endothelial cells. PPARgamma mRNA abundantly expressed in the U937 cells, not in the endothelial cells, is down-regulated by LPS. In contrast, LPS up-regulates mRNA for the glucocorticoid receptor which ligand anti-inflammatory steroid dexamethasone (DEX) strongly suppresses the LPS-induced expression of COX-2, although both 15d-PGJ(2) and DEX suppressed COX-2 promoter activity by interfering with the NF-kappaB signaling pathway. Transfection of a PPARgamma expression vector into the endothelial cells acquires this suppressive regulation of COX-2 gene by 15d-PGJ(2) but not by DEX. A selective COX-2 inhibitor, NS-398, inhibits production of PGD(2) in the U937 cells. Taking these findings together, we propose that expression of COX-2 is regulated by a negative feedback loop mediated through PPARgamma, which makes possible a dynamic production of PG, especially in macrophages, and may be attributed to various expression patterns and physiological functions of COX-2.  相似文献   

5.
6.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have been shown to inhibit the effects of proinflammatory cytokines such as interleukin-1beta (IL-1beta). This cytokine plays a key role in articular pathophysiologies by inducing the production of inflammatory mediators such as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). We previously demonstrated that 15d-PGJ(2) was more potent than troglitazone to counteract IL-1beta effects on chondrocytes. Here, we studied the action of 15d-PGJ(2) on intracellular targets in nuclear factor-kappaB (NF-kappaB) signalling pathway in IL-1beta treated rat chondrocytes. We found that 15d-PGJ(2) decreased inhibitor kappaBalpha (IkappaBalpha) degradation but not its phosphorylation by specifically inhibiting IkappaB kinase beta (IKKbeta), but not IKKalpha, enzymatic activity. We further evaluated the involvement of PPARgamma in the anti-inflammatory action of its ligands. In chondrocytes overexpressing functional PPARgamma protein, 15d-PGJ(2) pre-treatment inhibited inducible NO synthase and COX-2 mRNA expression, nitrite and PGE(2) production, p65 translocation and NF-kappaB activation. Troglitazone or rosiglitazone pre-treatment had no effect. 15d-PGJ(2) exhibited the same effect in chondrocytes overexpressing mutated PPARgamma protein. These results suggest that 15d-PGJ(2) exerts its anti-inflammatory effect in rat chondrocytes by a PPARgamma-independent mechanism, which can be conferred to a partial inhibition of IkappaBalpha degradation.  相似文献   

7.
The cyclopentenone prostaglandins (cyPGs) prostaglandin A1 (PGA1) and 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) have been reported to exhibit antiinflammatory activity in activated monocytes/macrophages. However, the effects of these two cyPGs on the expression of cytokine genes may differ. In this study, we investigated the mechanism of action of PGA1 in lipopolysaccharide (LPS)-induced expression of interleukin (IL)-10 mRNA in mouse peritoneal macrophages. 15d-PGJ2 inhibited expression of LPSinduced IL-10, whereas PGA1 increased LPS-induced IL-10 expression. This synergistic effect of PGA1 on LPS-induced IL-10 expression reached a maximum as early as 2 h after simultaneous PGA1 and LPS treatment (PGA1/LPS), and did not require new protein synthesis. The synergistic effect of PGA1 was inhibited by GW9662, a specific peroxisome proliferator-activated receptor (PPAR) antagonist, and Bay-11-7082, a NF-kappaB inhibitor. The extracellular signalregulated kinases (ERK) inhibitor PD98059 increased the expression of PGA1/LPS-induced IL-10 mRNA, rather than inhibiting the IL-10 expression. Moreover, PGA1 inhibited LPS-induced ERK phosphorylation. The synergistic effect of PGA1 on LPS-induced IL-10 mRNA and protein production was inhibited by p38 inhibitor PD169316, and PGA1 increased LPS-induced p38 phosphorylation. In the case of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK), the SAPK/JNK inhibitor SP600125 did not inhibit IL-10 mRNA synthesis but inhibited the production of IL-10 protein remarkably. These results suggest that the synergistic effect of PGA1 on LPS-induced IL-10 expression is NF-kappaB-dependent and mediated by mitogen-activated protein (MAP) kinases, p38, and SAPK/ JNK signaling pathways, and also associated with the PPARgamma pathway. Our data may provide more insight into the diverse mechanisms of PGA1 effects on the expression of cytokine genes.  相似文献   

8.
9.
In response to inflammatory cytokines, chondrocytes and synovial fibroblasts produce high amounts of prostaglandins (PG) which self-perpetuate locally the inflammatory reaction. Prostaglandins act primarily through membrane receptors coupled to G proteins but also bind to nuclear Peroxisome Proliferator-Activated Receptors (PPARs). Amongst fatty acids, the cyclopentenone metabolite of PGD2, 15-deoxy-Delta12,14PGJ2 (15d-PGJ2), was shown to be a potent ligand of the PPARgamma isotype prone to inhibit the production of inflammatory mediators. As the stimulated synthesis of PGE2 originates from the preferential coupling of inducible enzymes, cyclooxygenase-2 (COX-2) and membrane PGE synthase-1 (mPGES-1), we investigated the potency of 15d-PGJ2 to regulate prostaglandins synthesis in rat chondrocytes stimulated with interleukin-1beta (IL-1beta). We demonstrated that 15d-PGJ2, but not the high-affinity PPARgamma ligand rosiglitazone, decreased almost completely PGE2 synthesis and mPGES-1 expression. The inhibitory potency of 15d-PGJ2 was unaffected by changes in PPARgamma expression and resulted from inhibition of NF-kappaB nuclear binding and IkappaBalpha sparing, secondary to reduced phosphorylation of IKKbeta. Consistently with 15d-PGJ2 being a putative endogenous regulator of the inflammatory reaction if synthesized in sufficient amounts, the present data confirm the variable PPARgamma-dependency of its effects in joint cells while underlining possible species and cell types specificities.  相似文献   

10.
Smad2 is an important factor in TGFbeta/Smad2 signal transduction pathway with ability for signal propagation, it could translocate from cytoplasm to nucleus after the TGFbeta receptor-mediated phosphorylation. 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), a natural agonist of the peroxisome proliferator-activated receptor gamma (PPARgamma), is found recently to be able to function in the regulation of Smad2 activity. However, no quantification data have been yet reported, and it still keeps suspenseful whether or not 15d-PGJ2 could regulate Smad2 activity by depending on PPARgamma through PPAR gamma/TGFbeta/ Smad2 pathway. In this work, by analyzing the EGFP-Smad2 location in CHO cells according to the Nucleus Trafficking Analysis Module based on IN Cell Analyzer 1000 platform, TGFbeta stimulated EGFP-Smad2 translocation regulated by 15d-PGJ2 was quantitatively investigated. The results showed that TGFbeta could induce EGFP-Smad2 translocation from cytoplasm to nucleus by EC50 of 8.83 pM, and 15d-PGJ2 could impede the TGFbeta-stimulated Smad2 translocation by IC50 of 0.68 microM. Moreover, GW9662, a PPARgamma antagonist, could attenuate such a 15d-PGJ2 inhibitory activity by almost one order of magnitude. This result thereby implies that 15d-PGJ2 might inhibit Smad2 translocation through PPARgamma/TGFbeta/Smad2 pathway. Further investigation discovered that different from the case for 15d-PGJ2, rosiglitazone, another PPARgamma agonist, could enhance Smad2 translocation to nucleus, suggesting that rosiglitazone and 15d-PGJ(2) might take different modes in the activation of PPARgamma within the signaling pathway.  相似文献   

11.
12.
Ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), such as 15-deoxy-Delta(12,14)PGJ2 (15d-PGJ2) have been proposed as a new class of antiinflammatory compounds with possible clinical applications. As there is some controversy over the inhibitory effects of 15d-PGJ2 on chemokine gene expression, we investigated whether 15d-PGJ2 itself affected chemokine gene expression in human monocytes/macrophages and two monocytic cell lines. Here we demonstrate that the 15d-PGJ2 can induce IL-8 gene expression. In contrast, monocyte chemoattractant protein-1 gene expression was suppressed by 15d-PGJ2, while the expression of RANTES was unaltered. Furthermore, concomitant treatment of monocytes/macrophages with 15d-PGJ2 (2.5 x 10(-6) M) potentiated LPS-induced gene expression of IL-8 mRNA, but suppressed PMA-induction of IL-8 mRNA. In addition, treatment of U937 and THP-1 cells with 15d-PGJ2 also resulted in induction of IL-8 gene expression. Further studies demonstrated that 15d-PGJ2 regulated IL-8 gene expression via a ligand-specific and PPARgamma-dependent pathway. Our observations revealed a previous unappreciated function and mechanism of 15d-PGJ2-mediated regulation of cytokine gene expression in monocytes/macrophages.  相似文献   

13.
Peroxisome proliferator activator receptor-gamma (PPARgamma) is a nuclear receptor that controls the expression of several genes involved in metabolic homeostasis. We investigated the role of PPARgamma during the inflammatory response in sepsis by the use of the PPARgamma ligands, 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) and ciglitazone. Polymicrobial sepsis was induced by cecal ligation and puncture in rats and was associated with hypotension, multiple organ failure, and 50% mortality. PPARgamma expression was markedly reduced in lung and thoracic aorta after sepsis. Immunohistochemistry showed positive staining for nitrotyrosine and poly(ADP-ribose) synthetase in thoracic aortas. Plasma levels of TNF-alpha, IL-6, and IL-10 were increased. Elevated activity of myeloperoxidase was found in lung, colon, and liver, indicating a massive infiltration of neutrophils. These events were preceded by degradation of inhibitor kappaBalpha (IkappaBalpha), activation of IkappaB kinase complex, and c-Jun NH(2)-terminal kinase and, subsequently, activation of NF-kappaB and AP-1 in the lung. In vivo treatment with ciglitazone or 15d-PGJ(2) ameliorated hypotension and survival, blunted cytokine production, and reduced neutrophil infiltration in lung, colon, and liver. These beneficial effects of the PPARgamma ligands were associated with the reduction of IkappaB kinase complex and c-Jun NH(2)-terminal kinase activation and the reduction of NF-kappaB and AP-1 DNA binding in the lung. Furthermore, treatment with ciglitazone or 15d-PGJ(2) up-regulated the expression of PPARgamma in lung and thoracic aorta and abolished nitrotyrosine formation and poly(ADP-ribose) expression in aorta. Our data suggest that PPARgamma ligands attenuate the inflammatory response in sepsis through regulation of the NF-kappaB and AP-1 pathways.  相似文献   

14.
15-Deoxy-Delta 12,14-prostaglandin J2 (15d-PGJ2), a cyclopentenone prostaglandin, displays a potent anti-inflammatory effect at micromolar concentrations (>2 microM) through direct inhibition of nuclear factor (NF)-kappa B activation. Here we show that at submicromolar concentrations (0.1-0.5 microM) 15d-PGJ2 retains the ability to suppress the production of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in lipopolysaccharide (LPS)-activated murine J774 macrophages under the conditions of a prolonged incubation (>12 h). Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1), was induced and coincident with the anti-inflammatory action of 15d-PGJ2. Inhibition of HO-1 activity or scavenging carbon monoxide (CO), a byproduct derived from heme degradation, significantly attenuated the suppressive activity of 15d-PGJ2. Furthermore, LPS-induced NF-kappa B activation assessed by the inhibitory protein of NF-kappa B(I kappa B) degradation and p50 nuclear translocation was diminished in cells subjected to prolonged treatment with the low concentration of 15d-PGJ2. Treatment of cells with the protein synthesis inhibitor, cycloheximide, or the specific p38 MAP kinase inhibitor, SB203580, blocked the induction of HO-1 and suppression of LPS-induced I kappa B degradation mediated by 15d-PGJ2. Likewise, HO inhibitor and CO scavenger were effective in abolishing the inhibitory effects of 15d-PGJ2 on NF-kappa B activation induced by LPS. The functional role of CO was further demonstrated by the use of a CO releasing molecule, tricarbonyldichlororuthenium(II) dimer, which significantly suppressed LPS-induced nuclear translocation of p50 as assessed by confocal immunofluorescence. Collectively, these data suggest that even at submicromolar concentrations 15d-PGJ2 can exert an anti-inflammatory effect in macrophages through a mechanism that involves the action of HO/CO.  相似文献   

15.
We have investigated the potential use of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists as anti-inflammatory agents in cell-based assays and in a mouse model of endotoxemia. Human peripheral blood monocytes were treated with LPS or PMA and a variety of PPARgamma agonists. Although 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) at micromolar concentrations significantly inhibited the production of TNF-alpha and IL-6, four other high affinity PPARgamma ligands failed to affect cytokine production. Similar results were obtained when the monocytes were allowed to differentiate in culture into macrophages that expressed significantly higher levels of PPARgamma or when the murine macrophage cell line RAW 264.7 was used. Furthermore, saturating concentrations of a potent PPARgamma ligand not only failed to block cytokine production, but also were unable to block the inhibitory activity of 15d-PGJ2. Thus, activation of PPARgamma does not appear to inhibit the production of cytokines by either monocytes or macrophages, and the inhibitory effect observed with 15d-PGJ2 is most likely mediated by a PPARgamma-independent mechanism. To examine the anti-inflammatory activity of PPARgamma agonists in vivo, db/db mice were treated with a potent thiazolidinedione that lowered their elevated blood glucose and triglyceride levels as expected. When thiazolidinedione-treated mice were challenged with LPS, they displayed no suppression of cytokine production. Rather, their blood levels of TNF-alpha and IL-6 were elevated beyond the levels observed in control db/db mice challenged with LPS. Comparable results were obtained with the corresponding lean mice. Our data suggest that compounds capable of activating PPARgamma in leukocytes will not be useful for the treatment of acute inflammation.  相似文献   

16.
Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1alpha and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1beta, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)gamma agonists. Real-time PCR analysis showed that IL-1beta induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1alpha and PGE2 peaked 24 hours after stimulation with IL-1beta; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Delta12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 microM), with more potency on PGE2 level than on 6-keto-PGF1alpha level (-90% versus -66% at 10 microM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 microM. Inhibitory effects of 10 microM 15d-PGJ2 were neither reduced by PPARgamma blockade with GW-9662 nor enhanced by PPARgamma overexpression, supporting a PPARgamma-independent mechanism. EMSA and TransAM analyses demonstrated that mutated IkappaBalpha almost completely suppressed the stimulating effect of IL-1beta on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-kappaB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-kappaB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARgamma through inhibition of the NF-kappaB pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.  相似文献   

17.
18.
Regulation of cytokine and chemokine expression in microglia may have implications for CNS inflammatory disorders. In this study we examined the role of the cyclopentenone PG 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in microglial inflammatory activation in primary cultures of human fetal microglia. 15d-PGJ(2) potently inhibited the expression of microglial cytokines (IL-1, TNF-alpha, and IL-6). We found that 15d-PGJ(2) had differential effects on the expression of two alpha-chemokines; whereas the Glu-Lys-Arg (ELR)(-) chemokine IFN-inducible protein-10/CXCL10 was inhibited, the ELR(+) chemokine IL-8/CXCL8 was not inhibited. These findings were shown in primary human microglia and the human monocytic cells line THP-1 cells, using diverse cell stimuli such as bacterial endotoxin, proinflammatory cytokines (IL-1 and TNF-alpha), IFN-beta, and HIV-1. Furthermore, IL-8/CXCL8 expression was induced by 15d-PGJ(2) alone or in combination with TNF-alpha or HIV-1. Combined results from EMSA, Western blot analysis, and immunocytochemistry showed that 15d-PGJ(2) inhibited NF-kappaB, Stat1, and p38 MAPK activation in microglia. Adenoviral transduction of super-repressor IkappaBalpha, dominant negative MKK6, and dominant negative Ras demonstrated that NF-kappaB and p38 MAPK were involved in LPS-induced IFN-inducible protein 10/CXCL10 production. Interestingly, although LPS-induced IL-8/CXCL8 was dependent on NF-kappaB, the baseline or 15d-PGJ(2)-mediated IL-8/CXCL8 production was NF-kappaB independent. Our results demonstrate that 15d-PGJ(2) has opposing effects on the expression of two alpha-chemokines. These data may have implications for CNS inflammatory diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号