首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) is characterized by the presence of large numbers of fibrillar amyloid deposits in the form of senile plaques in the brain. The fibrils in senile plaques are composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the pathogenesis of AD, and many laboratories have investigated soluble Abeta aggregates generated from monomeric Abeta in vitro. Of these in vitro aggregates, the best characterized are called protofibrils. They are composed of globules and short rods, show primarily beta-structure by circular dichroism (CD), enhance the fluorescence of bound thioflavin T, and readily seed the growth of long fibrils. However, one difficulty in correlating soluble Abeta aggregates formed in vitro with those in vivo is the high probability that cellular interfaces affect the aggregation rates and even the aggregate structures. Reports that focus on the features of interfaces that are important in Abeta aggregation have found that amphiphilic interactions and micellar-like Abeta structures may play a role. We previously described the formation of Abeta(1-40) aggregates at polar-nonpolar interfaces, including those generated at microdroplets formed in dilute hexafluoro-2-propanol (HFIP). Here we compared the Abeta(1-40) aggregates produced on sodium dodecyl sulfate (SDS) micelles, which may be a better model of biological membranes with phospholipids that have anionic headgroups. At both HFIP and SDS interfaces, changes in peptide secondary structure were observed by CD immediately when Abeta(1-40) was introduced. With HFIP, the change involved an increase in predominant beta-structure content and in fluorescence with thioflavin T, while with SDS, a partial alpha-helical conformation was adopted that gave no fluorescence. However, in both systems, initial amorphous clustered aggregates progressed to soluble fibers rich in beta-structure over a roughly 2 day period. Fiber formation was much faster than in the absence of an interface, presumably because of the close intermolecular proximity of peptides at the interfaces. While these fibers resembled protofibrils, they failed to seed the aggregation of Abeta(1-40) monomers effectively.  相似文献   

2.
Ha C  Ryu J  Park CB 《Biochemistry》2007,46(20):6118-6125
The abnormal deposition and aggregation of beta-amyloid (Abeta) on brain tissues are considered to be one of the characteristic neuropathological features of Alzheimer's disease (AD). Environmental conditions such as metal ions, pH, and cell membranes are associated with Abeta deposition and plaque formation. According to the amyloid cascade hypothesis of AD, the deposition of Abeta42 oligomers as diffuse plaques in vivo is an important earliest event, leading to the formation of fibrillar amyloid plaques by the further accumulation of soluble Abeta under certain environmental conditions. In order to characterize the effect of metal ions on amyloid deposition and plaque growth on a solid surface, we prepared a synthetic template by immobilizing Abeta oligomers onto a N-hydroxysuccinimide ester-activated solid surface. According to our study using ex situ atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), and thioflavin T (ThT) fluorescence spectroscopy, Cu2+ and Zn2+ ions accelerated both Abeta40 and Abeta42 deposition but resulted only in the formation of "amorphous" aggregates. In contrast, Fe3+ induced the deposition of "fibrillar" amyloid plaques at neutral pH. Under mildly acidic environments, the formation of fibrillar amyloid plaques was not induced by any metal ion tested in this work. Using secondary ion mass spectroscopy (SIMS) analysis, we found that binding Cu ions to Abeta deposits on a solid template occurred by the possible reduction of Cu ions during the interaction of Abeta with Cu2+. Our results may provide insights into the role of metal ions on the formation of fibrillar or amorphous amyloid plaques in AD.  相似文献   

3.
Senile plaques, the invariable hallmark and likely proximal cause of Alzheimer's disease (AD), are structured depositions of the 40- and 42-residue forms of the A beta peptide. Conversely, diffuse plaques, which are not associated with neurodegeneration, consist mainly of unstructured A beta 42. We have investigated the interaction between A beta 40 and A beta 42 through an assay, which involves labeling both variants with an environment-sensitive fluorophore. We have monitored association of A beta without fibrillar seeds, which allows investigation of molecular species preceding fibrils. Immediately upon mixture, A beta 40 and A beta 42 associate into mixed aggregates, in which the peptides are unstructured and relatively accessible to water. When left to incubate for an extended period, larger, more tightly packed aggregates, which show secondary structure, replace the small, unstructured aggregates formed earlier. Our results show that in vitro the two A beta variants coassemble early in the fibrillogenesis pathway. The ease of formation for mixed and homogeneous aggregates is similar. A change in the local A beta variant ratio can therefore have a significant impact on A beta aggregation; indeed such a change has been reported in some types of familial AD.  相似文献   

4.
Conway KA  Harper JD  Lansbury PT 《Biochemistry》2000,39(10):2552-2563
Two missense mutations in the gene encoding alpha-synuclein have been linked to rare, early-onset forms of Parkinson's disease (PD). These forms of PD, as well as the common idiopathic form, are characterized by the presence of cytoplasmic neuronal deposits, called Lewy bodies, in the affected region of the brain. Lewy bodies contain alpha-synuclein in a form that resembles fibrillar Abeta derived from Alzheimer's disease (AD) amyloid plaques. One of the mutant forms of alpha-synuclein (A53T) fibrillizes more rapidly in vitro than does the wild-type protein, suggesting that a correlation may exist between the rate of in vitro fibrillization and/or oligomerization and the progression of PD, analogous to the relationship between Abeta fibrillization in vitro and familial AD. In this paper, fibrils generated in vitro from alpha-synuclein, wild-type and both mutant forms, are shown to possess very similar features that are characteristic of amyloid fibrils, including a wound and predominantly unbranched morphology (demonstrated by atomic force and electron microscopies), distinctive dye-binding properties (Congo red and thioflavin T), and antiparallel beta-sheet structure (Fourier transform infrared spectroscopy and circular dichroism spectroscopy). alpha-Synuclein fibrils are relatively resistant to proteolysis, a property shared by fibrillar Abeta and the disease-associated fibrillar form of the prion protein. These data suggest that PD, like AD, is a brain amyloid disease that, unlike AD, is characterized by cytoplasmic amyloid (Lewy bodies). In addition to amyloid fibrils, a small oligomeric form of alpha-synuclein, which may be analogous to the Abeta protofibril, was observed prior to the appearance of fibrils. This species or a related one, rather than the fibril itself, may be responsible for neuronal death.  相似文献   

5.
Alzheimer's disease (AD) is a neurodegenerative disorder whose hallmark is the presence of senile plaques and neurofibrillary tangles. Senile plaques are mainly composed of amyloid beta-peptide (Abeta) fibrils and several proteins including acetylcholinesterase (AChE). AChE has been previously shown to stimulate the aggregation of Abeta1-40 into amyloid fibrils. In the present work, the neurotoxicity of different amyloid aggregates formed in the absence or presence of AChE was evaluated in rat pheochromocytoma PC12 cells. Stable AChE-Abeta complexes were found to be more toxic than those formed without the enzyme, for Abeta1-40 and Abeta1-42, but not for amyloid fibrils formed with AbetaVal18-Ala, a synthetic variant of the Abeta1-40 peptide. Of all the AChE-Abeta complexes tested the one containing the Abeta1-40 peptide was the most toxic. When increasing concentrations of AChE were used to aggregate the Abeta1-40 peptide, the neurotoxicity of the complexes increased as a function of the amount of enzyme bound to each complex. Our results show that AChE-Abeta1-40 aggregates are more toxic than those of AChE-Abeta1-42 and that the neurotoxicity depends on the amount of AChE bound to the complexes, suggesting that AChE may play a key role in the neurodegeneration observed in Alzheimer brain.  相似文献   

6.
Yoshiike Y  Akagi T  Takashima A 《Biochemistry》2007,46(34):9805-9812
Amyloid beta (Abeta) toxicity has been hypothesized to initiate the pathogenesis of Alzheimer's disease (AD). The characteristic fibrillar morphology of Abeta-aggregates, that constitute the main components of senile plaque, has long been considered to account for the neurotoxicity. But recent reports argue against a primary role for mature fibrils in AD pathogenesis because of the lack of a robust correlation between the severity of neurological impairment and the extent of amyloid deposition. Toxicity from the soluble prefibrillar intermediate entity of aggregates often called oligomer has recently proposed a plausible explanation for this inconsistency. An alternative explanation is based on the observation that certain amyloid fibril morphologies are more toxic than others, indicating that not all amyloid fibrils are equally toxic. Here, we report that it is not only the beta-sheeted fibrillar structure but also the surface physicochemical composition that affects the toxicity of Abeta fibrils. For the first time, colloidal gold was used to visualize by electron microscopy positive-charge clusters on Abeta fibrils. Chemical modifications as well as point-mutated Abeta synthesis techniques were applied to change the surface structures of Abeta and to show how local structure affects surface properties that are responsible for electrostatic and hydrophobic interactions with cells. We also report that covering the surface of Abeta fibers with myelin basic protein, which has surface properties contrary to those of Abeta, suppresses Abeta toxicity. On the basis of these results, we propose that the surface structure of Abeta fibrils plays an important role in Abeta toxicity.  相似文献   

7.
The brains of Alzheimer's disease (AD) patients contain large numbers of amyloid plaques that are rich in fibrils composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the etiology of AD. Recent reports also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we demonstrate that Abeta-(1-40) can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta-(1-40) at low ionic strength. Dilution of these aggregation reactions induced disaggregation to monomers as measured by size exclusion chromatography. Protofibril concentrations monitored by thioflavin T fluorescence decreased in at least two kinetic phases, with initial disaggregation (rate constant approximately 1 h(-1)) followed by a much slower secondary phase. Incubation of the reactions without agitation resulted in less disaggregation at slower rates, indicating that the protofibrils became progressively more stable over time. In fact, protofibrils isolated by size exclusion chromatography were completely stable and gave no disaggregation. A second class of soluble Abeta aggregates was generated rapidly (<10 min) in buffered 2% hexafluoroisopropanol (HFIP). These aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. Electron microscopy and atomic force microscopy revealed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP, these aggregates initially were very unstable and disaggregated completely within 2 min. However, their stability increased as they progressed to fibers. Relative to Abeta protofibrils, the HFIP-induced aggregates seeded elongation by Abeta monomer deposition very poorly. The techniques used to distinguish these two classes of soluble Abeta aggregates may be useful in characterizing Abeta aggregates formed in vivo.  相似文献   

8.
Protein aging hypothesis of Alzheimer disease.   总被引:2,自引:0,他引:2  
Alzheimer disease (AD), the most common form of aging-related neurodegenerative disorders, is associated with formation of fibrillar deposits of amyloid beta-protein (Abeta). While the direct involvement of Abeta in AD has been well documented, the relations between Abeta production, amyloid formation, and neurodegeneration remain unknown. We propose that AD is initiated by a protein aging-related structural transformation in soluble Abeta. We hypothesize that spontaneous chemical modification of aspartyl residues in Abeta to transient succinimide induces a non-native conformation in a fraction of soluble Abeta, rendering it amyloidogenic and neurotoxic. Conformationally altered Abeta is characterized by increased stability in solution and the presence of a non-native beta-turn that determines folding of Abeta in solution and the structure of Abeta subunits incorporated into amyloid fibrils. While the soluble 'non-native' Abeta is both the factor triggering the neurodegenerative cascade and the precursor of amyloid plaques, these two events result from interaction of Abeta with different sets of cellular components and need not coincide in space and time. Extensive literature data and experimental evidence are provided in support of this hypothesis.  相似文献   

9.
The deposition of beta-amyloid peptide (Abeta) fibrils around neurons is an invariable feature of Alzheimer's disease and there is increasing evidence that fibrillar deposits and/or prefibrillar intermediates play a central role in the observed neurodegeneration. One site of Abeta generation is the endosomes, and we have investigated the kinetics of Abeta association at endosomal pH over physiologically relevant time frames. We have identified three distinct Abeta association phases that occur at rates comparable to endosomal transit times. Rapid formation of burst phase aggregates, larger than 200nm, was observed within 15 seconds. Two slower association phases were detected by fluorescence resonance energy transfer and termed phase 1 and phase 2 aggregation reactions. At 20 microM Abeta, pH 6, the half lives of the phase 1 and phase 2 aggregation phases were 3.15 minutes and 17.66 minutes, respectively. Atomic force microscopy and dynamic light scattering studies indicate that the burst phase aggregate is large and amorphous, while phase 1 and 2 aggregates are spherical with hydrodynamic radii around 30 nm. There is an apparent equilibrium, potentially mediated through a soluble Abeta intermediate, between the large burst phase aggregates and phase 1 and 2 spherical particles. The large burst phase aggregates form quickly, however, they disappear as the equilibrium shifts toward the spherical aggregates. These aggregated species do not contain alpha-helical or beta-structure as determined by circular dichroism spectroscopy. However, after two weeks beta-structure is observed and is attributable to the insoluble portion of the sample. After two months, mature amyloid fibrils appear and the spherical aggregates are significantly diminished.  相似文献   

10.
The progressive deposition of the amyloid beta peptide (Abeta) in fibrillar form is a key feature in the development of the pathology in Alzheimer's disease (AD). We have characterized the time course of Abeta fibril formation using a variety of assays and under different experimental conditions. We describe in detail the morphological development of the Abeta polymerization process from pseudo-spherical structures and protofibrils to mature thioflavin-T-positive/Congo red-positive amyloid fibrils. Moreover, we structurally characterize the various polymorphic fibrillar assemblies using transmission electron microscopy and determine their mass using scanning transmission electron microscopy. These results provide the framework for future investigations into how target compounds may interfere with the polymerization process. Such substances might have a therapeutic potential in AD.  相似文献   

11.
Alzheimer's disease (AD) is characterized by large numbers of senile plaques in the brain that consist of fibrillar aggregates of 40- and 42-residue amyloid-beta (Abeta) peptides. However, the degree of dementia in AD correlates better with the concentration of soluble Abeta species assayed biochemically than with histologically determined plaque counts, and several investigators now propose that soluble aggregates of Abeta are the neurotoxic agents that cause memory deficits and neuronal loss. These endogenous aggregates are minor components in brain extracts from AD patients and transgenic mice that express human Abeta, but several species have been detected by gel electrophoresis in sodium dodecylsulfate (SDS) and isolated by size exclusion chromatography (SEC). Endogenous Abeta aggregation is stimulated at cellular interfaces rich in lipid rafts, and anionic micelles that promote Abeta aggregation in vitro may be good models of these interfaces. We previously found that micelles formed in dilute SDS (2 mM) promote Abeta(1-40) fiber formation by supporting peptide interaction on the surface of a single micelle complex. In contrast, here we report that monomeric Abeta(1-42) undergoes an immediate conversion to a predominant beta-structured conformation in 2 mM SDS which does not proceed to amyloid fibrils. The conformational change is instead rapidly followed by the near quantitative conversion of the 4 kDa monomer SDS gel band to 8-14 kDa bands consistent with dimers through tetramers. Removal of SDS by dialysis gave a shift in the predominant SDS gel bands to 30-60 kDa. While these oligomers resemble the endogenous aggregates, they are less stable. In particular, they do not elute as discrete species on SEC, and they are completed disaggregated by boiling in 1% SDS. It appears that endogenous oligomeric Abeta aggregates are stabilized by undefined processes that have not yet been incorporated into in vitro Abeta aggregation procedures.  相似文献   

12.
The formation of amyloid fibrils by the SH3 domain of the alpha-subunit of bovine phosphatidylinositol-3'-kinase (PI3-SH3) has been investigated under carefully controlled solution conditions. NMR and CD characterisation of the denatured states from which fibrils form at low pH show that their properties can be correlated with the nature of the resulting aggregates defined by EM and FTIR spectroscopy. Compact partially folded states, favoured by the addition of anions, are prone to precipitate rapidly into amorphous species, whilst well-defined fibrillar structures are formed slowly from more expanded denatured states. Kinetic data obtained by a variety of techniques show a clear lag phase in the formation of amyloid fibrils. NMR spectroscopy shows no evidence for a significant population of small oligomers in solution during or after this lag phase. EM and FTIR indicate the presence of amorphous aggregates (protofibrils) rich in beta-structure after the lag phase but prior to the development of well-defined amyloid fibrils. These observations strongly suggest a nucleation and growth mechanism for the formation of the ordered aggregates. The morphologies of the fibrillar structures were found to be highly sensitive to the pH at which the protein solutions are incubated. This can be attributed to the effect of small perturbations in the electrostatic interactions that stabilise the contacts between the protofilaments forming the amyloid fibrils. Moreover, different hydrogen bonding patterns related to the various aggregate morphologies can be distinguished by FTIR analysis.  相似文献   

13.
The amyloid peptide (Abeta), derived from the proteolytic cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases, undergoes multistage assemblies to fibrillar depositions in the Alzheimer's brains. Abeta protofibrils were previously identified as an intermediate preceding insoluble fibrils. While characterizing a synthetic Abeta variant named EV40 that has mutations in the first two amino acids (D1E/A2V), we discerned unusual aggregation profiles of this variant. In comparison of the fibrillogenesis and cellular toxicity of EV40 to the wild-type Abeta peptide (Abeta40), we found that Abeta40 formed long fibrillar aggregates while EV40 formed only protofibrillar aggregates under the same in vitro incubation conditions. Cellular toxicity assays indicated that EV40 was slightly more toxic than Abeta40 to human neuroblastoma SHEP cells, rat primary cortical, and hippocampal neurons. Like Abeta40, the neurotoxicity of the protofibrillar EV40 could be partially attributed to apoptosis since multiple caspases such as caspase-9 were activated after SHEP cells were challenged with toxic concentrations of EV40. This suggested that apoptosis-induced neuronal loss might occur before extensive depositions of long amyloid fibrils in AD brains. This study has been the first to show that a mutated Abeta peptide formed only protofibrillar species and mutations of the amyloid peptide at the N-terminal side affect the dynamic amyloid fibrillogenesis. Thus, the identification of EV40 may lead to further understanding of the structural perturbation of Abeta to its fibrillation.  相似文献   

14.
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid beta-protein (Abeta) in fibrillar form on neuronal cells. However, the role of Abeta fibrils in neuronal dysfunction is highly controversial. This study demonstrates that monosialoganglioside GM1 (GM1) released from damaged neurons catalyzes the formation of Abeta fibrils, the toxicity and the cell affinity of which are much stronger than those of Abeta fibrils formed in phosphate-buffered saline. Abeta-(1-40) was incubated with equimolar GM1 at 37 degrees C. After a lag period of 6-12 h, amyloid fibrils were formed, as confirmed by circular dichroism, thioflavin-T fluorescence, size-exclusion chromatography, and transmission electron microscopy. The fibrils showed significant cytotoxicity against PC12 cells differentiated with nerve growth factor. Trisialoganglioside GT1b also facilitated the fibrillization, although the effect was weaker than that of GM1. Our study suggests an exacerbation mechanism of AD and an importance of polymorphisms in Abeta fibrils during the pathogenesis of the disease.  相似文献   

15.
The process of amyloid formation by the amyloid beta peptide (Abeta), i.e., the misassembly of Abetapeptides into soluble quaternary structures and, ultimately, amyloid fibrils, appears to be at the center of Alzheimer's disease (AD) pathology. We have shown that abnormal oxidative metabolites, including cholesterol-derived aldehydes, modify Abeta and accelerate the early stages of amyloidogenesis (the formation of spherical aggregates). This process, which we have termed metabolite-initiated protein misfolding, could explain why hypercholesterolemia and inflammation are risk factors for sporadic AD. Herein, the mechanism by which cholesterol metabolites hasten Abeta 1-40 amyloidogenesis is explored, revealing a process that has at least two steps. In the first step, metabolites modify Abeta peptides by Schiff base formation. The Abeta-metabolite adducts form spherical aggregates by a downhill polymerization that does not require a nucleation step, dramatically accelerating Abeta aggregation. In agitated samples, a second step occurs in which fibrillar aggregates form, a step also accelerated by cholesterol metabolites. However, the metabolites do not affect the rate of fibril growth in seeded aggregation assays; their role appears to be in initiating amyloidogenesis by lowering the critical concentration for aggregation into the nanomolar range. Small molecules that block Schiff base formation inhibit the metabolite effect, demonstrating the importance of the covalent adduct. Metabolite-initiated amyloidogenesis offers an explanation for how Abeta aggregation could occur at physiological nanomolar concentrations.  相似文献   

16.
AD (Alzheimer's disease) is a neurodegenerative disorder characterized by self-assembly and amyloid formation of the 39-43 residue long Abeta (amyloid-beta)-peptide. The most abundant species, Abeta(1-40) and Abeta(1-42), are both present within senile plaques, but Abeta(1-42) peptides are considerably more prone to self-aggregation and are also essential for the development of AD. To understand the molecular and pathological mechanisms behind AD, a detailed knowledge of the amyloid structures of Abeta-peptides is vital. In the present study we have used quenched hydrogen/deuterium-exchange NMR experiments to probe the structure of Abeta(1-40) fibrils. The fibrils were prepared and analysed identically as in our previous study on Abeta(1-42) fibrils, allowing a direct comparison of the two fibrillar structures. The solvent protection pattern of Abeta(1-40) fibrils revealed two well-protected regions, consistent with a structural arrangement of two beta-strands connected with a bend. This protection pattern partly resembles the pattern found in Abeta(1-42) fibrils, but the Abeta(1-40) fibrils display a significantly increased protection for the N-terminal residues Phe4-His14, suggesting that additional secondary structure is formed in this region. In contrast, the C-terminal residues Gly37-Val40 show a reduced protection that suggests a loss of secondary structure in this region and an altered filament assembly. The differences between the present study and other similar investigations suggest that subtle variations in fibril-preparation conditions may significantly affect the fibrillar architecture.  相似文献   

17.
The deposition of aggregated amyloid beta-protein (Abeta) in the human brain is a major lesion in Alzheimer' disease (AD). The process of Abeta fibril formation is associated with a cascade of neuropathogenic events that induces brain neurodegeneration leading to the cognitive and behavioral decline characteristic of AD. Although a detailed knowledge of Abeta assembly is crucial for the development of new therapeutic approaches, our understanding of the molecular mechanisms underlying the initiation of Abeta fibril formation remains very incomplete. The genetic defects responsible for familial AD influence fibrillogenesis. In a majority of familial cases determined by amyloid precursor protein (APP) and presenilin (PS) mutations, a significant overproduction of Abeta and an increase in the Abeta42/Abeta40 ratio are observed. Recently, it was shown that the two main alloforms of Abeta have distinct biological activity and behaviour at the earliest stage of assembly. In vitro studies demonstrated that Abeta42 monomers, but not Abeta40, form initial and minimal structures (pentamer/hexamer units called paranuclei) that can oligomerize to larger forms. It is now apparent that Abeta oligomers and protofibrils are more neurotoxic than mature Abeta fibrils or amyloid plaques. The neurotoxicity of the prefibrillar aggregates appears to result from their ability to impair fundamental cellular processes by interacting with the cellular membrane, causing oxidative stress and increasing free Ca(2+) that eventually lead to apoptotic cell death.  相似文献   

18.
Abeta(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular beta-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the Abeta(1-40) fibril formation process. A unique sample containing 90microM peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar beta-structures. The number of oligomers and the amount of non-fibrillar beta-structures grows throughout the lag phase and during the elongation phase these non-fibrillar beta-structures are transformed into fibrillar (amyloid) beta-structures, formed by association of high molecular weight intermediates.  相似文献   

19.
Transgenic mice over-expressing mutant human amyloid precursor protein have become an important tool for research on Alzheimer's disease (AD) and, in particular, for therapeutic screening. Many models have reported formation of amyloid plaques with age as is detected in AD. However, the plaques generated in transgenic mice are more soluble than human plaques. Differences in solubility may occur for a number of reasons; one proposal is the presence of murine Abeta peptides within the CNS milieu. Here, we report the interaction of human and murine Abeta peptides, Abeta40 and Abeta42, utilizing a fluorescence assay to monitor formation of mixed pre-fibrillar aggregates, electron microscopy to examine morphological characteristics and detergent solubility to monitor stability. Our results demonstrate that interspecies Abeta aggregates and fibres are readily formed and are more stable than homogenous human fibres. Furthermore, these results suggest that the presence of endogenous murine Abeta in human APP transgenic mice does not account for the increased solubility of plaques.  相似文献   

20.
Alzheimer's disease is characterized by amyloid deposits in the parenchyma and vasculature of the brain. The plaques are mainly composed of amyloid beta (Abeta) peptides ending in residues 40 and 42. Novel longer Abeta peptides were found in brain homogenates of mouse models of Alzheimer's disease and human brain tissue of patients carrying the familial amyloid precursor protein V717F mutation. The biophysical characteristics of these longer Abeta peptides and their role in plaque formation are not understood. We chose to focus our studies on Abeta peptides ending in residues Ile45, Val46 and Ile47 as these peptides were identified in human brain tissue. A combination of circular dichroism and electron microscopy was used to characterize the secondary and tertiary structures of these peptides. All three longer Abeta peptides consisted mainly of a beta-sheet secondary structure. Electron microscopy demonstrated that these beta-structured peptides formed predominantly amorphous aggregates, which convert to amyloid fibres over extended time periods. As these longer peptides may act as seeds for the nucleation of fibrils composed predominantly of shorter amyloid peptides, these interactions were studied. All peptides accelerated the random to beta-structural transitions and fibril formation of Abeta40 and 42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号