首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase C (PKC) is involved in several cell events including proliferation, survival and differentiation. The aim of this work was to investigate the role of PKC activation on retinal cells proliferation. We demonstrated that PKC activation by phorbol 12-myristate 13-acetate (PMA), a tumor promoter phorbol ester, is able to decrease retinal cells proliferation. This effect was mediated by M1 receptors and dependent on intracellular Ca(2+) increase, tyrosine kinase activity, phosphatidylinositol 3-kinase activity, polypeptide secretion and activation of TrkB receptors. The effect of PMA was not via activation of mitogen-activated protein (MAP) kinase. Carbamylcholine and brain derived neurotrophic factor were both able to decrease retinal cells proliferation to the same level as PMA did. Our results suggest that PKC activation leads to a decrease in retinal cells proliferation through the release of acetylcholine and brain derived neurotrophic factor in the culture, and activation of M1 and TrkB receptors, respectively.  相似文献   

2.
It was already shown that ouabain treatment can stimulate PKC isoenzymes leading to the activation of intracellular pathways involved in cell survival, growth and proliferation. We have previously demonstrated that ouabain or PMA treatment increases retinal ganglion cell survival, an effect mediated by PKC activation. The aim of this work was to investigate the role of EGF receptors in the ouabain effect and also to study which PKC isoform is activated by treatment with ouabain and PMA. Our results show that 2.5 μM tyrphostin, 1.0 μM PP1, 4.0 μM U73122, 1.0 μM JNK inhibitor V and 2.0 μM rottlerin blocked the ouabain effect indicating an involvement of receptors for EGF, Src, PLC, JNK and PKC δ respectively. The effect of PMA was only abolished when cultures were treated with rottlerin or with the JNK inhibitor suggesting the involvement of PKC δ and JNK. These results indicate that PKC δ could be a key regulator of retinal ganglion cell survival.  相似文献   

3.
Although muscarinic acetylcholine receptors (mAChR) regulate the activity of smooth muscle myosin, the effects of mAChR activation on cytoplasmic myosin have not been characterized. We found that activation of transfected human M3 mAChR induces the phosphorylation of myosin light chains (MLC) and the formation of myosin-containing stress fibers in Chinese hamster ovary (CHO-m3) cells. Direct activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also induces myosin light chain phosphorylation and myosin reorganization in CHO-m3 cells. Conventional (alpha), novel (delta), and atypical (iota) PKC isoforms are activated by mAChR stimulation or PMA treatment in CHO-m3 cells, as indicated by PKC translocation or degradation. mAChR-mediated myosin reorganization is abolished by inhibiting conventional PKC isoforms with Go6976 (IC50 = 0.4 microM), calphostin C (IC50 = 2.4 microM), or chelerythrine (IC50 = 8.0 microM). Stable expression of dominant negative RhoAAsn-19 diminishes, but does not abolish, mAChR-mediated myosin reorganization in the CHO-m3 cells. Similarly, mAChR-mediated myosin reorganization is diminished, but not abolished, in CHO-m3 cells which are multi-nucleate due to inactivation of Rho with C3 exoenzyme. Expression of dominant negative RhoAAsn-19 or inactivation of RhoA with C3 exoenzyme does not affect PMA-induced myosin reorganization. These findings indicate that the PKC-mediated pathway of myosin reorganization (induced either by M3 mAChR activation or PMA treatment) can continue to operate even when RhoA activity is diminished in CHO-m3 cells. Conventional PKC isoforms and RhoA may participate in separate but parallel pathways induced by M3 mAChR activation to regulate cytoplasmic myosin. Changes in cytoplasmic myosin elicited by M3 mAChR activation may contribute to the unique ability of these receptors to regulate cell morphology, adhesion, and proliferation.  相似文献   

4.
Protein kinase C (PKC) activation has been implicated in cellular proliferation in neoplastic astrocytes. The roles for specific PKC isozymes in regulating this glial response, however, are not well understood. The aim of this study was to characterize the expression of PKC isozymes and the role of PKC-eta expression in regulating cellular proliferation in two well characterized astrocytic tumor cell lines (U-1242 MG and U-251 MG) with different properties of growth in cell culture. Both cell lines expressed an array of conventional (alpha, betaI, betaII, and gamma) and novel (theta and epsilon) PKC isozymes that can be activated by phorbol myristate acetate (PMA). Another novel PKC isozyme, PKC-eta, was only expressed by U-251 MG cells. In contrast, PKC-delta was readily detected in U-1242 MG cells but was present only at low levels in U-251 MG cells. PMA (100 nm) treatment for 24 h increased cell proliferation by over 2-fold in the U-251 MG cells, whereas it decreased the mitogenic response in the U-1242 MG cells by over 90%. When PKC-eta was stably transfected into U-1242 MG cells, PMA increased cell proliferation by 2.2-fold, similar to the response of U-251 MG cells. The cell proliferation induced by PMA in both the U-251 MG and U-1242-PKC-eta cells was blocked by the PKC inhibitor bisindolylmaleimide (0.5 micrometer) and the MEK inhibitor, PD 98059 (50 micrometer). Transient transfection of wild type U-251 with PKC-eta antisense oligonucleotide (1 micrometer) also blocked the PMA-induced increase in [(3)H]thymidine incorporation. The data demonstrate that two glioblastoma lines, with functionally distinct proliferative responses to PMA, express different novel PKC isozymes and that the differential expression of PKC-eta plays a determining role in the different proliferative capacity.  相似文献   

5.
Activation of protein kinase C (PKC) inhibits cell cycle progression at the G1/S and G2/M transitions. We found that phorbol 12-myristate 13-acetate (PMA) induced upregulation of p21, not only in MCF-7 cells arrested in the G1 phase as previously shown, but also in cells delayed in the G2 phase. This increase in p21 in cells accumulated in the G1 and G2/M phases of the cell cycle after PMA treatment was inhibited by the PKC inhibitor GF109203X. This indicates that PKC activity is required for PMA-induced p21 upregulation and cell cycle arrest in the G1 and G2/M phases of the cell cycle. To further assess the role of p21 in the PKC-induced G2/M cell cycle arrest independently of its G1 arrest, we used aphidicolin-synchronised MCF-7 cells. Our results show that, in parallel with the inhibition of cdc2 activity, PMA addition enhanced the associations between p21 and either cyclin B or cdc2. Furthermore, we found that after PMA treatment p21 was able to associate with the active Tyr-15 dephosphorylated form of cdc2, but this complex was devoid of kinase activity indicating that p21 may play a role in inhibition of cdc2 induced by PMA. Taken together, these observations provide evidence that p21 is involved in integrating the PKC signaling pathway to the cell cycle machinery at the G2/M cell cycle checkpoint.  相似文献   

6.
Protein kinase C (PKC) has been widely implicated in positive and negative control of cell proliferation. We have recently shown that treatment of non-small cell lung cancer (NSCLC) cells with phorbol 12-myristate 13-acetate (PMA) during G1 phase inhibits the progression into S phase, an effect mediated by PKC delta-induced up-regulation of the cell cycle inhibitor p21 Cip1. However, PMA treatment in asynchronously growing NSCLC cells leads to accumulation of cells in G2/M. Studies in post-G1 phases revealed that PMA induced an irreversible G2/M cell cycle arrest in NSCLC cells and conferred morphological and biochemical features of senescence, including elevated SA-beta-Gal activity and reduced telomerase activity. Remarkably, this effect was phase-specific, as it occurred only when PKC was activated in S, but not in G1, phase. Mechanistic analysis revealed a crucial role for the classical PKC alpha isozyme as mediator of the G2/M arrest and senescence, as well as for inducing p21(Cip1) an obligatory event for conferring the senescence phenotype. In addition to the unappreciated role of PKC isozymes, and specifically PKC alpha, in senescence, our data introduce the paradigm that discrete PKCs trigger distinctive responses when activated in different phases of the cell cycle via a common mechanism that involves p21 Cip1 up-regulation.  相似文献   

7.
The effects of activating endogenous protein kinase C (PKC) on cell proliferation and the cell cycle were investigated by treating the breast cancer cell line SKBR-3 with phorbol 12-myristate 13 acetate (PMA). This inhibited cell growth in a concentration-dependent manner, causing a marked arrest of cells in G(1). Pre-treatment with GF109203X completely blocked the antiproliferative effect of PMA, and pre-treatment with the PKCdelta inhibitor rottlerin partially blocked it. Infecting SKBR-3 cells with an adenovirus vector containing wild-type PKCdelta, WTPKCdeltaAdV, had similar effects on PMA. Infecting the cells with a dominant-negative PKCdeltaAdV construct blocked the growth inhibition induced by PMA. Downstream of PKC, PMA treatment inhibited extracellular signal-regulated kinase mitogen-activated protein kinase phosphorylation, up-regulated c-jun NH(2)-terminal kinase phosphorylation, and inhibited retinoblastoma (Rb) phosphorylation. These results strongly implicated PKC (mainly PKCdelta) in the G(1) arrest induced by PMA and suggested PKC as a target for breast cancer treatment.  相似文献   

8.
Previous results demonstrated that the intercellular communication mediated by gap junctions in retinal pigment epithelial (RPE) cells from the healthy Long Evans (LE) rat strain is higher than that from the dystrophic Royal College of Surgeons (RCS) rat strain. We examined connexin (Cx) expression in both cell types. At the mRNA level, a qualitatively similar expression pattern was found whereby Cx26, Cx32, Cx36, Cx43, Cx45 and Cx46 were all expressed. At the protein level, only Cx43 and Cx46 were detected. Expression of both isoforms was higher in LE-RPE as compared to RCS-RPE by a factor of 1.25 and 2 respectively. Phosphorylation of Cx43 was increased upon activation of protein kinase C (PKC) by 1 μM phorbol 12-myristate 13-acetate (PMA). The phosphorylation status was not changed in hyperglycemic conditions, but this treatment strongly decreased total Cx43 levels to about 75 and 40% (in LE-RPE and RCS-RPE cells respectively) of the control level in LE-RPE cells. This decrease could be overcome by PKC downregulation. These results demonstrate that PKC activation and hyperglycemic conditions have different effects on Cx43 and that PKC is involved in the metabolic pathway induced by hyperglycemic conditions. Received: 21 July 2000/Revised: 19 January 2001  相似文献   

9.
The human promyelocytic cell line NB4 exhibited a weak adhesion capacity for bone marrow-derived stromal cells and their extracellular matrices (5-15% of adherent cells). Adhesion was enhanced by pulse-treatment of cells with phorbolester (PMA 10(-7) M). Adhesion was induced within minutes, was fibronectin-specific, and affected up to 100% of the treated cells. This biological response to PMA resulted from the activation of protein kinase C (PKC), since PKC inhibitors (staurosporine, sphingosine, CGP 41251, and calphostin C) prevented the phenomenon. Phenotypical analysis of integrin receptor expression (particularly FN receptors VLA-4 and VLA-5) at the membrane of untreated or PMA-treated cells revealed that PMA induced no significant modification of the level of expression of these receptors. However, inhibition studies carried out with anti-VLA monoclonal antibodies demonstrated that the FN-specific adhesion triggered by PKC involved the alpha 5 beta 1 FN-specific receptors (VLA-5). We showed that the binding of NB4 cells to fibronectin was RGD-dependent. PMA-induced adhesion was not correlated to phosphorylation of the VLA-5 receptor. These findings may partially explain the malignant behaviour of these cells: The loss of their capacity to adhere to stromal cells may arrest differentiation and explain the large number of leukemic cells in the circulation.  相似文献   

10.
We examined which isoforms of protein kinase C (PKC) may be involved in the regulation of cationic amino acid transporter-1 (CAT-1) transport activity in cultured pulmonary artery endothelial cells (PAEC). An activator of classical and novel isoforms of PKC, phorbol 12-myristate-13-acetate (PMA; 100 nM), inhibited CAT-1-mediated l-arginine transport in PAEC after a 1-h treatment and activated l-arginine uptake after an 18-h treatment of cells. These changes in l-arginine transport were not related to the changes in the expression of the CAT-1 transporter. The inhibitory effect of PMA on l-arginine transport was accompanied by a translocation of PKCalpha (a classical PKC isoform) from the cytosol to the membrane fraction, whereas the activating effect of PMA on l-arginine transport was accompanied by full depletion of the expression of PKCalpha in PAEC. A selective activator of Ca(2+)-dependent classical isoforms of PKC, thymeleatoxin (Thy; 100 nM; 1-h and 18-h treatments), induced the same changes in l-arginine uptake and PKCalpha translocation and depletion as PMA. The effects of PMA and Thy on l-arginine transport in PAEC were attenuated by a selective inhibitor of classical PKC isoforms Go 6976 (1 micro M). Phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl (PIP; 5 micro M), which activates novel PKC isoforms, did not affect l-arginine transport in PAEC after 1-h and 18-h treatment of cells. PIP (5 micro M; 1 h) induced the translocation of PKCepsilon (a novel PKC isoform) from the cytosolic to the particulate fraction and did not affect the translocation of PKCalpha. These results demonstrate that classical isoforms of PKC are involved in the regulation of CAT-1 transport activity in PAEC. We suggest that translocation of PKCalpha to the plasma membrane induces phosphorylation of the CAT-1 transporter, which leads to inhibition of its transport activity in PAEC. In contrast, depletion of PKCalpha after long-term treatment with PMA or Thy promotes dephosphorylation of the CAT-1 transporter and activation of its activity.  相似文献   

11.
The MDR3 protein is a transporter of phosphatidylcholine on the canalicular membrane of human hepatocytes. Previously we showed that the expression of MDR3 mRNA was down-regulated by phorbol 12-myristate 13-acetate (PMA) in human Chang liver cells. In the present study, to elucidate the isoform of protein kinase C (PKC), which influences the level of MDR3 protein, we investigated the effects of PKC-specific inhibitors and antisense oligonucleotides. The level of protein decreased around 50% after treatment for 3–5 days using the dosage of PMA effective against the mRNA expression. The half-life of the MDR3 protein was estimated to be about 5 days. This decrease was antagonized by GF109203X, a non-selective inhibitor of PKCs, and Gö6976, a selective inhibitor for PKCα/β. These inhibitors also suppressed the reduction in MDR3 protein. To specify the isoform of PKC, the cells were treated with antisense oligonucleotide of PKCα or PKCβ. The suppressive effects on MDR3 mRNA of PMA were attenuated in antisense PKCβ-treated cells, but those in antisense PKCα-treated cells were not attenuated. These suggested that PKCβ plays a regulatory role in the expression of MDR3.  相似文献   

12.
Members of protein kinase C (PKC) family have been widely implicated in the regulation of cell proliferation, differentiation and survival. Increased protein C activity in malignant breast tissue and in most aggressive breast cancer cell lines suggests possible role of PKC in the development and progression of breast cancer. PKC may be therefore a target for breast cancer treatment. In our study we attempted to investigate the effect of: phorbol ester (PMA)-PKC activator, and bisindolylmaleimide II (GF II), a highly selective PKC inhibitor, on the proliferation as well as induction of apoptosis and necrosis in breast cancer cell line MDA-MB-231. Our results provide evidence for multidirectional effects of PKC on the proliferation of this type of breast cancer cells. The effects of both compounds were different after short time of exposition (1-3 h). PMA induced proliferation, while GF II showed an opposite effect. After 24 h, however, both compounds exhibited relatively high inhibitory effect on the proliferation and proved to be effective in induction of necrosis and apoptosis.  相似文献   

13.
The mechanism by which Ca2+ regulates proopiomelanocortin (POMC)-derived peptide secretion and POMC mRNA levels was investigated in primary cultures of porcine intermediate lobe (IL) cells maintained in serum-free medium. POMC gene expression was evaluated by the dot blot hybridization assay with a 32P-labeled DNA probe complementary to the full-length sequence of porcine POMC mRNA. Treatment of IL cells for 24 h with the calmodulin (CAM) antagonists W7 and W13 reduced POMC mRNA levels by a maximum of 50% in a dose-dependent manner (ED50 approximately 10(-8) M). Accumulation of alpha-melanocyte-stimulating hormone (alpha-MSH) in the medium was also depressed by 50% after 8 h of treatment. The role of protein kinase C (PKC) was investigated by depleting the IL cell PKC content with phorbol ester treatment. Phorbol 12-myristate 13-acetate (PMA) at 5 X 10(-8) M induced a rapid translocation of cytoplasmic PKC activity toward the membrane. After 12 h of PMA treatment, PKC activity was undetectable in either the cytoplasmic or the particulate fractions. The same dose of PMA induced a time-dependent decrease in POMC mRNA levels (50% inhibition after 24 h). The same effect was seen with the phorbol ester phorbol 12,13-dibutyrate at 5 X 10(-8) M, whereas the inactive phorbol ester 4 alpha-phorbol at 5 X 10(-8) M was without effect after 24 h of treatment. PMA treatment had a biphasic effect on alpha-MSH secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The membrane glycoproteins CD4 (L3T4) and CD8 (Lyt2) are expressed on distinct populations of mature murine T lymphocytes, and are thought to be receptors for monomorphic determinants expressed on MHC class II and class I molecules, respectively. Although they differ in their ligand specificity, it has been presumed that CD4 and CD8 perform equivalent functions in the T cells that bear them. Since activation of protein kinase C (PKC) is known to cause rapid down-regulation of various receptors, including the T cell receptor complex (TcR complex), we treated cells with phorbol 12-myristate 13-acetate (PMA), a PKC activator, to determine whether cell-surface expression of CD4 and CD8 would be similarly affected by this intracellular mediator. Brief or relatively prolonged treatment with PMA induced mature murine T cells to reduce their surface expression of the TcR complex and of CD4, but not of CD8. Similarly, PMA rapidly induced transfected L cells to down-regulate surface CD4 expression, but had no effect on surface CD8 expression. Most significantly, PMA treatment induced CD4+CD8+ immature thymocytes to rapidly reduce their surface CD4 expression, but, again, it had no immediate effect on the surface expression of CD8. These results indicate that CD4 and TcR complex cell-surface expression are both sensitive to PKC activation by brief treatment with PMA, whereas CD8 expression is not, and suggest that CD4 and CD8 surface expression levels are regulated by distinct intracellular mechanisms.  相似文献   

15.
Natural cytotoxicity receptors (NCRs) are major activating receptors involved in NK cytotoxicity. NCR expression varies with the activation state of NK cells, and the expression level correlates with NK cells’ natural cytotoxicity. In this study, we found that Gö6983, a PKC inhibitor, induced a remarkable increase of NCR expression on primary NK cells, but other PKC inhibitors and NK cell stimulators such as IL-2 and PMA, did not. Gö6983 increased the expression of NCR in a time- and concentration-dependent manner. Furthermore, Gö6983 strongly upregulated the surface expression of death ligands FasL and TRAIL, but not cytotoxic molecules perforin and granzyme B. Unlike two other NK stimulating molecules, IL-2, and PMA, Gö6983 did not induce NK cell proliferation. Up-regulation of NCRs and death ligands on NK cells by Gö6983 resulted in a significant enhancement of NK cytotoxicity against various cancer cell lines. Most importantly, administration of Gö6983 effectively inhibited pulmonary tumor metastasis in mice in a dose-dependent manner. These results suggest that Gö6983 functions as an NK cell activating molecule (NKAM); this NKAM is a novel anti-cancer and anti-metastasis drug candidate because it enhances NK cytotoxicity against cancer cells in vivo as well as in vitro.  相似文献   

16.
Cigarette smoke could induce pulmonary smooth muscle cells (PASMCs) proliferation. Although our previous study had implied the involvement of protein kinase Cα (PKCα), the molecular mechanism underlying PKCα pathway in this process is still unknown. In this study, rat PASMCs were stimulated by cigarette smoke extract (CSE) or PMA (a special activator to PKCα). Two percent CSE and PMA significantly enhanced cyclin D1 expression and cells proliferation. But cyclin D1-specific siRNA successfully inhibited DNA synthesis in CSE-treated or PMA-treated cells. On the other hand, PKCα-specific siRNA significantly suppressed cyclin D1 expression in CSE-treated cells. Moreover, PKCα-specific siRNA resulted in a cell-cycle arrest in G0/G1 and decreased cells number significantly. We conclude that CSE induced rat PASMCs proliferation at least partly via PKCα-mediated cyclin D1 expression.  相似文献   

17.
We have used a recombinant mouse pre-B cell line (TonB210.1, expressing Bcr/Abl under the control of an inducible promoter) and several human leukemia cell lines to study the effect of high tyrosine kinase activity on G protein-coupled receptor (GPCR) agonist-stimulated cellular Ca2+ release and store-operated Ca2+ entry (SOCE). After induction of Bcr/Abl expression, GPCR-linked SOCE increased. The effect was reverted in the presence of the specific Abl inhibitor imatinib (1 μM) and the Src inhibitor PP2 (10 μM). In leukemic cell lines constitutively expressing high tyrosine kinase activity, Ca2+ transients were reduced by imatinib and/or PP2. Ca2+ transients were enhanced by specific inhibitors of PKC subtypes and this effect was amplified by tyrosine kinase inhibition in Bcr/Abl expressing TonB210.1 and K562 cells. Under all conditions Ca2+ transients were essentially blocked by the PKC activator PMA. In Bcr/Abl expressing (but not in native) TonB210.1 cells, tyrosine kinase inhibitors enhanced PKCα catalytic activity and PKCα co-immunoprecipitated with Bcr/Abl.Unlike native TonB210.1 cells, Bcr/Abl expressing cells showed a high rate of cell death if Ca2+ influx was reduced by complexing extracellular Ca2+ with BAPTA. Our data suggest that tonic inhibition of PKC represents a mechanism by which high tyrosine kinase activity can enhance cellular Ca2+ transients and thus exert profound effects on the proliferation, apoptosis and chemotaxis of leukemic cells.  相似文献   

18.
The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotides against PKC-alpha, or the PKC inhibitor G?6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号