首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Voltage-gated Ca(2+) channels play a critical role in controlling Ca(2+) entry in various cells. Ciliary reversal in Paramecium depends on the Ca(2+) influx through voltage-gated Ca(2+) channels on the ciliary membrane. One of the voltage-gated Ca(2+) channel mutants in Paramecium caudatum, cnrC, neither produces Ca(2+) action potentials nor responds to any depolarizing stimuli. Here, we report that the cnrC(+) gene product is P. caudatum centrin (Pccentrin1p), a member of the Ca(2+)-binding EF-hand protein superfamily. The Pccentrin1p gene of cnrC was found to contain a single-base deletion, a mutation that caused the loss of the fourth EF-hand of Pccentrin1p. Moreover, the wild-type Ca(2+) channel function was impaired by Pccentrin1p gene silencing, leading to the loss of current-evoked Ca(2+) action potentials and stimulated ciliary reversal. These results demonstrate that Pccentrin1p is indispensable for the activity of the voltage-gated Ca(2+) channels that control ciliary reversal in Paramecium.  相似文献   

2.
Trypsin premature activation has been thought to be a key event in the initiation phase of acute pancreatitis. Here we test a hypothesis that a sustained increase of cytosolic Ca(2+) concentration ([Ca(2+)](C)) can trigger K(+) influx into pancreas acinar zymogen granules (ZGs) via a Ca(2+)-activated K(+) channel (K(Ca)), and this influx of K(+) then mobilizes bound-Ca(2+) by K(+)/Ca(2+) ion-exchange to increase free Ca(2+) concentration in the ZGs ([Ca(2+)](G)) and release bound-H(+) by K(+)/H(+) ion-exchange to decrease the pH in ZGs (pH(G)). Both the increase of [Ca(2+)](G) and the decrease of pH(G) will facilitate trypsinogen autoactivation and stabilize active trypsin inside ZGs that could lead to acute pancreatitis. The experimental results are consistent with our hypothesis, suggesting that K(+) induced ion-exchanges play a critical role in the initiation of trypsin premature activation in ZGs.  相似文献   

3.
In most mammalian cells, regulatory volume decrease (RVD) is mediated by swelling-activated Cl(-) and K(+) channels. Previous studies in the human neuroblastoma cell line CHP-100 have demonstrated that exposure to hypoosmotic solutions activates Cl(-) channels which are sensitive to Ca(2+). Whether a Ca(2+)-dependent K(+) conductance is activated after cell swelling was investigated in the present studies. Reducing the extracellular osmolarity from 290 to 190 mOsm/kg H(2)O rapidly activated 86Rb effluxes. Hypoosmotic stress also increased cytosolic Ca(2+) in fura-2 loaded cells. Pretreatment with 2.5 mM EGTA and nominally Ca(2+) free extracellular solution significantly decreased the hypoosmotically induced rise in cytosolic Ca(2+) and the swelling-activated 86Rb efflux. In cell-attached patch-clamp studies, decreasing the extracellular osmolarity activated a K(+) conductance that was blocked by Ba(2+). In addition, the swelling-activated K(+) channels were significantly inhibited in the presence of nominally free extracellular Ca(2+) and 2.5mM EGTA. These results suggest that in response to hypoosmotic stress, a Ca(2+)-dependent K(+) conductance is activated in the human neuroblastoma cell line CHP-100.  相似文献   

4.
We examined the effects of the mitochondrial Ca(2+)-activated K(+) (mitoBK(Ca)) channel activator NS 1619 on L-type Ca(2+) channels in rat ventricular myocytes. NS 1619 inhibited the Ca(2+) current in a dose-dependent manner. NS 1619 shifted the activation curve to more positive potentials, but did not have a significant effect on the inactivation curve. Pretreatment with inhibitors of membrane BK(Ca) channel, mitoBK(Ca) channel, protein kinase C, protein kinase A, and protein kinase G had little effect on the Ca(2+) current and did not alter the inhibitory effect of NS 1619 significantly. The application of additional NS 1619 in the presence of isoproterenol, a selective beta-adrenoreceptor agonist, reduced the Ca(2+) current to approximately the same level as a single application of NS 1619. In conclusion, our results suggest that NS 1619 inhibits the Ca(2+) current independent of the mitoBK(Ca) channel and protein kinases. Since NS 1619 is widely used to study mitoBK(Ca) channel function, it is essential to verify these unexpected effects of NS 1619 before experimental data can be interpreted accurately.  相似文献   

5.
In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.  相似文献   

6.
Huang CC  Hall AC  Lim PH 《Life sciences》2004,75(3):329-338
The agent hemin has been demonstrated to be able to initiate a coordinated differentiation program in several cell types. In the present study, we examined the ability of hemin on inducing cell differentiation and Ca(2+)-activated K(+) channel activity in erythroleukemic K562 cells. Treating undifferentiated K562 cells with hemin (0.1 mM) for five days caused these cells to display differentiation-like characteristics including chromatin aggregation, nuclear degradation, pseudopod extension of the membrane and increased hemoglobin production. However, overall cell viability was not significantly changed by the presence of hemin. After hemin treatment for different periods, the Ca(2+)-activated K(+) channel was activated by the addition of ionomycin (1 microM), and was inhibited by either clotrimazole, charybdotoxin, or EGTA. Before hemin treatment there was no significant Ca(2+)-activated K(+) channel activity present in undifferentiated K562 cells. After hemin treatment for 5 days, a significant Ca(2+)-activated K(+) channel activity was detected. This increasing Ca(2+)-activated K(+) channel activity may be contributed from a subtype of Ca(2+)-activated K(+) channel, KCNN4. These results suggest that the ability of hemin to induce increasing Ca(2+)-activated K(+) channel activity may contribute to the mechanism of hemin-induced K562 cell differentiation.  相似文献   

7.
Cai Q  Zhu Z  Li H  Fan X  Jia N  Bai Z  Song L  Li X  Liu J 《Life sciences》2007,80(7):681-689
Prenatal stress is known to cause neuronal loss and oxidative damage in the hippocampus of offspring rats. To further understand the mechanisms, the present study was undertaken to investigate the effects of prenatal stress on the kinetic properties of high-voltage-activated (HVA) Ca(2+) and K(+) channels in freshly isolated hippocampal CA3 pyramidal neurons of offspring rats. Pregnant rats in the prenatal stress group were exposed to restraint stress on days 14-20 of pregnancy three times daily for 45 min. The patch clamp technique was employed to record HVA Ca(2+) and K(+) channel currents. Prenatal stress significantly increased HVA Ca(2+) channel disturbance including the maximal average HVA calcium peak current amplitude (-576.52+/-7.03 pA in control group and -702.05+/-6.82 pA in prenatal stress group, p<0.01), the maximal average HVA Ca(2+) current density (-40.89+/-0.31 pA/pF in control group and -49.44+/-0.37 pA/pF in prenatal stress group, p<0.01), and the maximal average integral current of the HVA Ca(2+) channel (106.81+/-4.20 nA ms in control group and 133.49+/-4.59 nA ms in prenatal stress group, p<0.01). The current-voltage relationship and conductance--voltage relationship of HVA Ca(2+) channels and potassium channels in offspring CA3 neurons were not affected by prenatal stress. These data suggest that exposure of animals to stressful experience during pregnancy can exert effects on calcium ion channels of offspring hippocampal neurons and that the calcium channel disturbance may play a role in prenatal stress-induced neuronal loss and oxidative damage in offspring brain.  相似文献   

8.
The acrosome reaction (AR) is a Ca(2+)-dependent event required for sperm to fertilize the egg. The activation of T-type voltage-gated Ca(2+) channels plays a key role in the induction of this process. This report describes the actions of two toxins from the scorpion Parabuthus granulatus named kurtoxin-like I and II (KLI and KLII, respectively) on sperm Ca(2+) channels. Both toxins decrease T-type Ca(2+) channel activity in mouse spermatogenic cells and inhibit the AR in mature sperm. Saturating concentrations of the toxins inhibited at most approximately 70% of the whole-cell Ca(2+) current, suggesting the presence of a toxin-resistant component. In addition, both toxins inhibited approximately 60% of the AR, which is consistent with the participation of T-type Ca(2+) channels in the sperm AR.  相似文献   

9.
Functional large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels can be assembled from four alpha subunits (Slo1) alone, or together with four auxiliary beta1 subunits to greatly increase the apparent Ca(2+) sensitivity of the channel. We examined the structural features involved in this modulation with two types of experiments. In the first, the tail domain of the alpha subunit, which includes the RCK2 (regulator of K(+) conductance) domain and Ca(2+) bowl, was replaced with the tail domain of Slo3, a BK-related channel that lacks both a Ca(2+) bowl and high affinity Ca(2+) sensitivity. In the second, the Ca(2+) bowl was disrupted by mutations that greatly reduce the apparent Ca(2+) sensitivity. We found that the beta1 subunit increased the apparent Ca(2+) sensitivity of Slo1 channels, independently of whether the alpha subunits were expressed as separate cores (S0-S8) and tails (S9-S10) or full length, and this increase was still observed after the Ca(2+) bowl was mutated. In contrast, beta1 subunits no longer increased Ca(2+) sensitivity when Slo1 tails were replaced by Slo3 tails. The beta1 subunits were still functionally coupled to channels with Slo3 tails, as DHS-I and 17 beta-estradiol activated these channels in the presence of beta1 subunits, but not in their absence. These findings indicate that the increase in apparent Ca(2+) sensitivity induced by the beta1 subunit does not require either the Ca(2+) bowl or the linker between the RCK1 and RCK2 domains, and that Slo3 tails cannot substitute for Slo1 tails. The beta1 subunit also induced a decrease in voltage sensitivity that occurred with either Slo1 or Slo3 tails. In contrast, the beta1 subunit-induced increase in apparent Ca(2+) sensitivity required Slo1 tails. This suggests that the allosteric activation pathways for these two types of actions of the beta1 subunit may be different.  相似文献   

10.
Inglis V  Karpinski E  Benishin C 《Life sciences》2003,73(18):2291-2305
In N1E 115 neuroblastoma cells, gamma-dendrotoxin (DTX, 200 nM) blocked the outward K(+) current by 31.1 +/- 3.5% (n = 4) with approximately 500 nM Ca(2+) in the pipet solution, but had no effect on the outward K(+) current when internal Ca(2+) was reduced. Using a ramp protocol, iberiotoxin (IbTX, 100 nM) inhibited a component of the whole cell current, but in the presence of 200 nM gamma-DTX, no further inhibition by IbTX was observed. Two types of single channels were seen using outside-out patches when the pipette free Ca(2+) concentration was approximately 500 nM; a 63 pS and a 187 pS channel. The 63 pS channel was TEA-, IbTX- and gamma-DTX-insensitive, while the 187 pS channel was blocked by 1 mM TEA, 100 nM IbTX or 200 nM gamma-DTX. Both channels were activated by external application of ionomycin, when the pipet calcium concentration was reduced. gamma-DTX (200 nM) reduced the probability of openings of the 187 pS channel, with an IC(50) of 8.5 nM. In GH(3) cells gamma-DTX (200 nM) also blocked an IbTX-sensitive component of whole-cell K(+) currents. These results suggest that gamma-DTX blocks a large conductance Ca(2+) activated K(+) current in N1E 115 cells. This is the first indication that any of the dendrotoxins, which have classically been known to block voltage-gated (Kv) channels, can also block Ca(2+) activated K(+) channels.  相似文献   

11.
The presence and function of voltage-gated Ca(2+) channels were examined in individual muscle fibers freshly dispersed from the triclad turbellarian Dugesia tigrina. Individual muscle fibers contracted in response to elevated extracellular K(+) in a concentration-dependent fashion. These depolarization-induced contractions were blocked by extracellular Co(2+) (2.5 mM), suggesting that they were dependent on depolarization-induced Ca(2+) influx across the sarcolemma. A voltage-gated inward current was apparent in whole cell recordings when the outward K(+) current was abolished by replacement of intracellular K(+) by Cs(+). This inward current was amplified with increasing concentration (相似文献   

12.
Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration. The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels and precipitated with antibodies against alpha(1C) and alpha(1D) L-type Ca(2+) channels. To confirm the specificity of the interaction, precipitation experiments were carried out also in reverse order. Also, additive precipitation was performed because alpha(1C) and alpha(1D) L-type Ca(2+) channels always refer to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain.  相似文献   

13.
Quesada I  Chin WC  Verdugo P 《FEBS letters》2006,580(9):2201-2206
Phaeocystis globosa, a leading agent in marine carbon cycling, releases its photosynthesized biopolymers via regulated exocytosis. Release is elicited by blue light and relayed by a characteristic cytosolic Ca(2+) signal. However, the source of Ca(2+) in these cells has not been established. The present studies indicate that Phaeocystis' secretory granules work as an intracellular Ca(2+) oscillator. Optical tomography reveals that photo-stimulation induces InsP(3)-triggered periodic lumenal [Ca(2+)] oscillations in the granule and corresponding out-of-phase cytosolic oscillations of [Ca(2+)] that trigger exocytosis. This Ca(2+) dynamics results from an interplay between the intragranular polyanionic matrix, and two Ca(2+)-sensitive ion channels located on the granule membrane: an InsP(3)-receptor-Ca(2+) channel, and an apamin-sensitive K(+) channel.  相似文献   

14.
Donepezil is an acetylcholinesterase inhibitor used in Alzheimer's disease therapy. The neuroprotective effect of donepezil has been demonstrated in a number of different models of neurodegeneration including beta-amyloid toxicity. Since the mechanisms of neurodegeneration involve the activation of both Ca(2+)- and K(+)-channels, the study of donepezil action on voltage-gated ionic currents looked advisable. In the present study, the action of donepezil on voltage-gated Ca(2+)- and K(+)-channels was investigated on isolated neurons of the edible snail (Helix pomatia) using the two-microelectrodes voltage-clamp technique. Donepezil rapidly and reversibly inhibited voltage activated Ca(2+)-current (I(Ca)) (IC(50)=7.9 microM) and three types of high threshold K(+)-current: Ca(2+)-dependent K(+)-current (I(C)) (IC(50)=6.4 microM), delayed rectifier K(+)-current (I(DR)) (IC(50)=8.0 microM) and fast transient K(+)-current (I(Adepol)) (IC(50)=9.1 microM). The drug caused a dual effect on low-threshold fast transient K(+)-current (I(A)), potentiating it at low (5 microM) concentration, but inhibiting at higher (7 microM and above) concentration. Donepezil also caused a significant hyperpolarizing shift of the voltage-current relationship of I(Ca) (but not of any type of K(+)-current). Results suggest the possible contribution of the blocking effect of donepezil on the voltage-gated Ca(2+)- and K(+)-channels to the neuroprotective effect of the drug.  相似文献   

15.
Ca(2+) channel inactivation in the neurons of the freshwater snail, Lymnaea stagnalis, was studied using patch-clamp techniques. In the presence of a high concentration of intracellular Ca(2+) buffer (5 mM EGTA), the inactivation of these Ca(2+) channels is entirely voltage dependent; it is not influenced by the identity of the permeant divalent ions or the amount of extracellular Ca(2+) influx, or reduced by higher levels of intracellular Ca(2+) buffering. Inactivation measured under these conditions, despite being independent of Ca(2+) influx, has a bell-shaped voltage dependence, which has often been considered a hallmark of Ca(2+)-dependent inactivation. Ca(2+)-dependent inactivation does occur in Lymnaea neurons, when the concentration of the intracellular Ca(2+) buffer is lowered to 0.1 mM EGTA. However, the magnitude of Ca(2+)-dependent inactivation does not increase linearly with Ca(2+) influx, but saturates for relatively small amounts of Ca(2+) influx. Recovery from inactivation at negative potentials is biexponential and has the same time constants in the presence of different intracellular concentrations of EGTA. However, the amplitude of the slow component is selectively enhanced by a decrease in intracellular EGTA, thus slowing the overall rate of recovery. The ability of 5 mM EGTA to completely suppress Ca(2+)-dependent inactivation suggests that the Ca(2+) binding site is at some distance from the channel protein itself. No evidence was found of a role for serine/threonine phosphorylation in Ca(2+) channel inactivation. Cytochalasin B, a microfilament disrupter, was found to greatly enhance the amount of Ca(2+) channel inactivation, but the involvement of actin filaments in this effect of cytochalasin B on Ca(2+) channel inactivation could not be verified using other pharmacological compounds. Thus, the mechanism of Ca(2+)-dependent inactivation in these neurons remains unknown, but appears to differ from those proposed for mammalian L-type Ca(2+) channels.  相似文献   

16.
This report describes the isolation, primary structure determination, and functional characterization of two similar toxins from the scorpion Parabuthus granulatus named kurtoxin-like I and II (KLI and KLII, respectively). KLII from P. granulatus is identical to kurtoxin from Parabuthus transvaalicus (a 63 amino-acid long toxin) whereas KLI is a new peptide containing 62 amino acid residues closely packed by four disulfide bridges with a molecular mass of 7244. Functional assays showed that both toxins, KLI and kurtoxin from P. granulatus, potently inhibit native voltage-gated T-type Ca(2+) channel activity in mouse male germ cells. In addition, KLI was shown to significantly affect the gating mechanisms of recombinant Na(+) channels and weakly block alpha(1)3.3Ca(V) channels expressed in Xenopus oocytes. KLI and kurtoxin from P. granulatus represent new probes to study the role of ion channels in germ cells, as well as in cardiac and neural tissue.  相似文献   

17.
[(3)H]noradrenaline ([(3)H]NA) released from sympathetic nerves in the isolated main pulmonary artery of the rabbit was measured in response to field stimulation (2Hz, 1ms, 60V for 3min) in the presence of uptake blockers (cocaine, 3 x10(-5)M and corticosterone, 5 x10(-5)M). The [(3)H]NA-release was fully blocked by the combined application of the selective and irreversible 'N-type' voltage-sensitive Ca(2+)-channel (VSCC)-blocker omega-conotoxin (omega-CgTx) GVIA (10(-8)M) and the 'non-selective' VSCC-blocker aminoglycoside antibiotic neomycin (3x10(-3)M). Na(+)-loading (Na(+)-pump inhibition by K(+)-free perfusion) was required to elicit further NA-release after blockade of VSCCs (omega-CgTx GVIA+neomycin). In K(+)-free solution, in the absence of functioning VSCCs (omega-CgTx GVIA+neomycin), the fast Na(+)-channel activator veratridine (10(-5)M) further potentiated the nerve-evoked release of [(3)H]NA. This NA-release was significantly inhibited by KB-R7943, and fully blocked by Ca(o)(2+)-removal. However, Li(+)-substitution was surprisingly ineffective. The non-selective K(+)-channel blocker 4-aminopyridine (4-AP, 10(-4)M) also further potentiated the nerve-evoked release of NA in K(+)-free solution. This potentiated release was concentration-dependently inhibited by KB-R7943, significantly inhibited by Li(+)-substitution and abolished by Ca(o)(2+)-removal. It is concluded that in Na(+)-loaded sympathetic nerves, in which the VSCCs are blocked, the reverse Na(+)/Ca(2+)-exchange-mediated Ca(2+)-entry is responsible for transmitter release on nerve-stimulation. Theoretically we suppose that the fast Na(+)-channel and the exchanger proteins are close to the vesicle docking sites.  相似文献   

18.
It has been suggested that the large conductance Ca(2)+-activated K(+) channel contains one or more domains known as regulators of K(+) conductance (RCK) in its cytosolic C terminus. Here, we show that the second RCK domain (RCK2) is functionally important and that it forms a heterodimer with RCK1 via a hydrophobic interface. Mutant channels lacking RCK2 are nonfunctional despite their tetramerization and surface expression. The hydrophobic residues that are expected to form an interface between RCK1 and RCK2, based on the crystal structure of the bacterial MthK channel, are well conserved, and the interactions of these residues were confirmed by mutant cycle analysis. The hydrophobic interaction appears to be critical for the Ca(2+)-dependent gating of the large conductance Ca(2+)-activated K(+) channel.  相似文献   

19.
The vertebrate transient receptor potential cationic channel TRPV4 has been proposed as an osmo- and mechanosensor channel. Studies using knock-out animal models have further emphasized the relevance of the TRPV4 channel in the maintenance of the internal osmotic equilibrium and mechanosensation. However, at the cellular level, there is still one important question to answer: does the TRPV4 channel generate the Ca(2+) signal in those cells undergoing a Ca(2+)-dependent regulatory volume decrease (RVD) response? RVD in human airway epithelia requires the generation of a Ca(2+) signal to activate Ca(2+)-dependent K(+) channels. The RVD response is lost in airway epithelia affected with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator channel. We have previously shown that the defective RVD in CF epithelia is linked to the lack of swelling-dependent activation of Ca(2+)-dependent K(+) channels. In the present study, we show the expression of TRPV4 in normal human airway epithelia, where it functions as the Ca(2+) entry pathway that triggers the RVD response after hypotonic stress, as demonstrated by TRPV4 antisense experiments. However, cell swelling failed to trigger Ca(2+) entry via TRPV4 channels in CF airway epithelia, although the channel's response to a specific synthetic activator, 4 alpha-phorbol 12,13-didecanoate, was maintained. Furthermore, RVD was recovered in CF airway epithelia treated with 4 alpha-phorbol 12,13-didecanoate. Together, these results suggest that defective RVD in CF airway epithelia might be caused by the absence of a TRPV4-mediated Ca(2+) signal and the subsequent activation of Ca(2+)-dependent K(+) channels.  相似文献   

20.
Recently, it was observed that the acetylcholine analogue carbachol induces a transient stimulation of an apical Cl(-) conductance in basolaterally depolarized rat distal colonic epithelium (Schultheiss et al., 2003). The further characterization of this conductance was the aim of the present study. All experiments were performed at basolaterally depolarized tissues (111.5 mmol.l(-1) KCl buffer at the serosal side); in the absence of a K(+) gradient, a Cl(-) current was driven across the apical membrane (107 mmol.l(-1) K gluconate/4.5 mmol.l(-1) KCl buffer on the mucosal side). Under these conditions, carbachol evoked an atropine-sensitive biphasic change in short-circuit current (I(SC)), consisting of a transient increase followed by a long-lasting decrease, suggesting a stimulation of apical Cl(-) conductance followed by an inhibition. This conductance was inhibited by SITS, but was resistant against glibenclamide, a blocker of CFTR. The carbachol-induced I(SC) was dependent on the presence of mucosal Ca(2+). Ionomycin, a Ca(2+) ionophore, mimicked the effect of carbachol. An antibody against bovine Ca(2+)-activated Cl(-) channel ClCa 1 stained rat colonic epithelial cells both at the cell membrane as well as intracellularly, suggesting that the action of Ca(2+) may be caused by a stimulation of a ClC a-type anion channel. The activation of apical Cl(-) conductance by carbachol was resistant against any blockers of the phospholipase C/IP3/protein kinase C pathway tested (e.g., U-73122, 2-ABP, Li(+), staurosporine), but was inhibited by the NO-synthase blocker L: -NNA. Vice versa, NO-donating compounds such as GEA 3162 or sodium nitroprusside evoked a transient increase of I(SC). Consequently, NO seems to be involved in the transient stimulation of apical Ca(2+)-dependent Cl(-) conductance after muscarinic receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号