首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein kinase B (PKB or Akt) is a mitogen-regulated protein kinase involved in the protection of cells from apoptosis, the promotion of cell proliferation and diverse metabolic responses [1]. Its activation is initiated by the binding of 3' phosphorylated phosphoinositide lipids to its pleckstrin homology (PH) domain, resulting in the induction of activating phosphorylation at residues Thr308 and Ser473 by upstream kinases such as phosphoinositide-dependent protein kinase-1 (PDK1) [2]. Adhesion of epithelial cells to extracellular matrix leads to protection from apoptosis via the activation of phosphoinositide (PI) 3-kinase and Akt/PKB through an unknown mechanism [3] [4]. Here, we use the localisation of Akt/PKB within the cell to probe the sites of induction of PI 3-kinase activity. In fibroblasts, immunofluorescence microscopy showed that endogenous Akt/PKB localised to membrane ruffles at the outer edge of the cell following mitogen treatment as did green fluorescent protein (GFP) fusions with full-length Akt/PKB or its PH domain alone. In epithelial cells, the PH domain of Akt/PKB localised to sites of cell-cell and cell-matrix contact, distinct from focal contacts, even in the absence of serum. As this localisation was disrupted by PI 3-kinase inhibitory drugs and by mutations that inhibit interaction with phosphoinositides, it is likely to represent the sites of constitutive 3' phosphoinositide generation that provide a cellular survival signal. We propose that the attachment-induced, PI-3-kinase-mediated survival signal in epithelial cells is generated not only by cell-matrix interaction but also by cell-cell interaction.  相似文献   

2.
采用脂质体转染的方法 ,将含持续激活蛋白激酶B的真核表达质粒转染到SMMC 772 1肝癌细胞中 ,研究蛋白激酶B对人肝癌细胞增殖和凋亡的影响 .用RNA印迹及蛋白激酶B测活鉴定 ,并获得稳定表达持续激活蛋白激酶B的细胞株 ,用MTT法、软琼脂克隆形成率及细胞周期测定等方法检测超表达蛋白激酶B的 772 1细胞增殖情况 ,结果显示超表达蛋白激酶B的 772 1细胞生长能力增强 ,软琼脂克隆形成率增高 ,S期细胞增多 ,p2 7Kip1表达下降 .用流式细胞术检测悬浮培养诱导的细胞失巢凋亡 ,发现超表达蛋白激酶B能抑制细胞失巢凋亡 .上述结果提示蛋白激酶B能促进肝癌细胞增殖 ,抑制细胞凋亡 .  相似文献   

3.
Upon detachment from the extracellular matrix, epithelial cells enter into programmed cell death, a phenomenon known as anoikis, ensuring that they are unable to survive in an inappropriate location. Activated ras oncogenes protect cells from this form of apoptosis. The nature of the survival signals activated by integrin engagement and usurped by oncogenic Ras are unknown: here we show that in both cases phosphoinositide 3-OH kinase (PI 3-kinase), but not Raf, mediates this protection, acting through protein kinase B/Akt (PKB/Akt). Constitutively activated PI 3-kinase or PKB/Akt block anoikis, while inhibition of PI 3-kinase abrogates protection by Ras, but not PKB/Akt. Inhibition of either PI 3-kinase or PKB/Akt induces apoptosis in adherent epithelial cells. Attachment of cells to matrix leads to rapid elevation of the levels of PI 3-kinase lipid products and PKB/Akt activity, both of which remain high in Ras-transformed cells even in suspension. PI 3-kinase acting through PKB/Akt is therefore implicated as a key mediator of the aberrant survival of Ras-transformed epithelial cells in the absence of attachment, and mediates matrix-induced survival of normal epithelial cells.  相似文献   

4.
Cell survival depends on proper propagation of protective signals through intracellular signaling intermediates. We report here that calponin homology domain-containing integrin-linked kinase (ILK)-binding protein (CH-ILKBP), a widely expressed adaptor protein localized at plasma membrane-actin junctions, is essential for transmission of survival signals. Cells that are depleted of CH-ILKBP undergo extensive apoptosis despite the presence of cell-extracellular matrix contacts and soluble growth factors. The activating phosphorylation of protein kinase B (PKB/Akt), a key regulator of apoptosis, is impaired in the absence of CH-ILKBP. Importantly, loss of CH-ILKBP prevents the membrane translocation of PKB/Akt. Furthermore, forced membrane targeting of PKB/Akt bypasses the requirement of CH-ILKBP for the activating phosphorylation of PKB/Akt, suggesting that CH-ILKBP is required for the membrane translocation but not the subsequent phosphorylation of PKB/Akt. Finally, we show that loss of CH-ILKBP is also required for the full activation of extracellular signal-regulated kinase (ERK)1/2. However, restoration of the PKB/Akt activation is sufficient for protection of cells from apoptosis induced by the depletion of CH-ILKBP despite the persistent suppression of the ERK1/2 activation. Thus, CH-ILKBP is an important component of the prosurvival signaling pathway functioning primarily by facilitating the membrane translocation of PKB/Akt and consequently the activation of PKB/Akt in response to extracellular survival signals.  相似文献   

5.
Epithelial cells undergo death receptor-dependent apoptosis when detached from matrix, a process termed anoikis. Activation of Akt/protein kinase B (PKB) by matrix attachment protects cells from anoikis. In this study, we establish a link between anoikis and Akt/PKB-mediated survival by demonstrating that Akt/PKB is cleaved by caspases in matrix-detached epithelial cells by a mechanism that involves death receptors. Reduced levels of Akt/PKB protein were observed in detached Madin-Darby canine kidney cells relative to cells attached to collagen. Equivalent levels of Akt/PKB, however, were detected in matrix-adherent and detached cells after inhibition of caspase activity or expression of an Akt/PKB mutant (D108+119A) that is resistant to caspase cleavage. The contribution of death domain-containing proteins to Akt/PKB cleavage was evidenced by the ability of dominant negative Fas-associated death domain to restore normal levels of Akt/PKB in matrix-detached cells. Importantly, expression of a cleavage-resistant Akt/PKB mutant protected matrix-detached cells from apoptosis. These studies suggest that members of the death receptor family promote the caspase-mediated cleavage of Akt/PKB and that this event contributes to anoikis.  相似文献   

6.
Mechanical stress is known to modulate fundamental events such as cell life and death. Mechanical stretch in particular has been identified as a positive regulator of proliferation in skin keratinocytes and other cell systems. In the present study it was investigated whether antiapoptotic signaling is also stimulated by mechanical stretch. It was demonstrated that mechanical stretch rapidly induced the phosphorylation of the proto-oncogene protein kinase B (PKB)/Akt at both phosphorylation sites (serine 473/threonine 308) in different epithelial cells (HaCaT, A-431, and human embryonic kidney-293). Blocking of phosphoinositide 3-OH kinase by selective inhibitors (LY-294002 and wortmannin) abrogated the stretch-induced PKB/Akt phosphorylation. Furthermore mechanical stretch stimulated phosphorylation of epidermal growth factor receptor (EGFR) and the formation of EGFR membrane clusters. Functional blocking of EGFR phosphorylation by either selective inhibitors (AG1478 and PD168393) or dominant-negative expression suppressed stretch-induced PKB/Akt phosphorylation. Finally, the angiotensin II type 1 receptor (AT1-R) was shown to induce positive transactivation of EGFR in response to cell stretch. These findings define a novel signaling pathway of mechanical stretch, namely the activation of PKB/Akt by transactivation of EGFR via angiotensin II type 1 receptor. Evidence is provided that stretch-induced activation of PKB/Akt protects cells against induced apoptosis.  相似文献   

7.
IGF-II is a growth factor implicated in human cancers and animal tumor models. While the mitogenic properties of IGF-II are well documented, its ability to suppress apoptosis in vivo has never been proven. We generated independent MMTV-IGF-II transgenic mice to examine the control of epithelial apoptosis at the morphological, cellular and molecular levels during the physiological event of postlactation mammary involution. Transgenic IGF-II expression was achieved in mammary epithelium and increased IGF-II bioactivity was confirmed by phosphorylation of the insulin receptor substrate-1, a signaling molecule downstream of the type I IGF receptor. IGF-II overexpression induced a delay in mammary involution, as evident by increased mammary gland to body weight ratios and persistence of both functionally intact lobulo-alveoli and mammary epithelial cellularity. The delayed mammary involution resulted from a significant reduction in mammary epithelial apoptosis, and not from increased epithelial proliferation. Recombinant IGF-II pellets implanted into involuting mammary glands of wild-type mice provided further evidence that IGF-II protein inhibited local epithelial apoptosis. At the molecular level, phosphorylated Akt/PKB, but not Erk1 or Erk2, persisted in IGF-II overexpressors and temporally correlated with reduced epithelial apoptosis. Levels of the phosphatase PTEN were unaltered in the transgenic tissue suggesting that the maintenance of Akt/PKB phosphorylation resulted from sustained phosphorylation rather than altered dephosphorylation of PIP-3. Together, this data reveal that IGF-II inhibits apoptosis in vivo and this effect correlates with prolonged phosphorylation of Akt/PKB  相似文献   

8.
Wang ZX  Jiang CS  Liu L  Wang XH  Jin HJ  Wu Q  Chen Q 《Cell research》2005,15(5):379-386
The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARy and C/EBPα and disrupting the interaction between PPARγ and RXRα, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARγ. Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.  相似文献   

9.
10.
Tissue homeostasis requires balancing cell proliferation and programmed cell death. IGF1 significantly suppressed etoposide-induced apoptosis, measured by caspase 3 activation and quantitation of cellular subG(1) DNA content, in rat parotid salivary acinar cells (C5). Transduction of C5 cells with an adenovirus expressing a constitutively activated mutant of Akt-suppressed etoposide-induced apoptosis, whereas a kinase-inactive mutant of Akt suppressed the protective effect of IGF1. IGF1 also suppressed apoptosis induced by taxol and brefeldin A. EGF was unable to suppress apoptosis induced by etoposide, but was able to synergize with IGF1 to further suppress caspase 3 activation and DNA cleavage after etoposide treatment. The catalytic activity of Akt was significantly higher following stimulation with both growth factors compared to stimulation with IGF1 or EGF alone. These results suggest that a threshold of activated Akt is required for suppression of apoptosis and the cooperative action of growth factors in regulating salivary gland homeostasis.  相似文献   

11.
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt) is thought to serve as an oncogenic signaling pathway which can be activated by Ras. The role of PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells is currently not clear. Here we demonstrate that inducible expression of oncogenic Ha-Ras results in activation of PKB/Akt in rat intestinal epithelial cells (RIE-iHa-Ras), which was blocked by treatment with inhibitors of PI3K activity. The PI3K inhibitor, LY-294002, partially reversed the morphological transformation induced by Ha-Ras and resulted in a modest stimulation of apoptosis. The most pronounced phenotypic alteration following inhibition of PI3K was induction of G(1) phase cell cycle arrest. LY-294002 blocked the Ha-Ras-induced expression of cyclin D1, cyclin-dependent kinase (CDK) 2, and increased the levels of p27(kip). Both LY-294002 and wortmannin significantly reduced anchorage-independent growth of RIE-iHa-Ras cells. Forced expression of both the constitutively active forms of Raf (DeltaRaf-22W or Raf BXB) and Akt (Akt-myr) resulted in transformation of RIE cells that was not achieved by transfection with either the Raf mutant construct or Akt-myr alone. These findings delineate an important role for PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells.  相似文献   

12.
Renewal of the gastrointestinal epithelium involves a coordinated process of terminal differentiation and programmed cell death. Integrins have been implicated in the control of apoptotic processes in various cell types. Here we examine the role of integrins in the regulation of apoptosis in gastrointestinal epithelial cells with the use of a rat small intestinal epithelial cell line (RIE1) as a model. Overexpression of the integrin alpha5 subunit in RIE1 cells conferred protection against several proapoptotic stimuli. In contrast, overexpression of the integrin alpha2 subunit had no effect on cell survival. The antiapoptotic effect of the alpha5 subunit was partially retained by a mutated version that had a truncation of the cytoplasmic domain. The antiapoptotic effects of the full-length or truncated alpha5 subunit were reversed upon treatment with inhibitors of phosphatidylinositol 3-kinase (PI-3-kinase), suggesting that the alpha5beta1 integrin might interact with the PI-3-kinase/Akt survival pathway. When cells overexpressing alpha5 were allowed to adhere to fibronectin, there was a moderate activation of protein kinase B (PKB)/Akt, whereas no such effect was seen in alpha2-overexpressing cells adhering to collagen. Furthermore, in cells overexpressing alpha5 and adhering to fibronectin, there was a dramatic enhancement of the ability of growth factors to stimulate PKB/Akt; again, this was not seen in cells overexpressing alpha2 subunit and adhering to collagen or fibronectin. Expression of a dominant negative version of PKB/Akt in RIE cells blocked to ability of alpha5 to enhance cell survival. Thus, the alpha5beta1 integrin seems to protect intestinal epithelial cells against proapoptotic stimuli by selectively enhancing the activity of the PI-3-kinase/Akt survival pathway.  相似文献   

13.
Functional role of death-associated protein 3 (DAP3) in anoikis   总被引:3,自引:0,他引:3  
Detachment of adherent epithelial cells from the extracellular matrix induces apoptosis, known as anoikis. Integrin stimulation protects cells from anoikis, but the responsible mechanisms are not well known. Here, we demonstrated that a pro-apoptotic GTP-binding protein, DAP3 (death-associated protein 3), is critical for induction of anoikis. Down-regulation of DAP3 expression by antisense oligonucleotides inhibited anoikis. Conversely, overexpression of DAP3 augmented cell death and caspase activation induced by cell detachment. Furthermore, the association of DAP3 with FADD and the activation of caspase-8 were induced by cell detachment. We also showed that DAP3 is phosphorylated by kinase Akt (PKB), and active Akt can nullify apoptosis induction by DAP3. Mutation of a consensus Akt phosphorylation site in DAP3 renders it resistant to suppression by active Akt in cells. Integrin ligation stimulates Akt activation and phosphorylation of DAP3 in intact cells, as well as suppresses the ability of DAP3 overexpression to augment anoikis. Involvement of DAP3 in anoikis signaling demonstrates a novel role for this GTP-binding protein in apoptosis induction caused by cell detachment.  相似文献   

14.
Apoptosis plays a critical role in the maintenance of gut mucosal homeostasis and is regulated by numerous factors including polyamines. Although the exact roles of polyamines in apoptotic pathway are still unclear, inhibition of polyamine synthesis promotes the resistance of intestinal epithelial cells to apoptosis. Akt is a serine-threonine kinase that has been established as an important intracellular signaling in regulating cell survival. The current studies test the hypothesis that polyamines are involved in the control of Akt activity in normal intestinal epithelial cells (IEC-6 line) and that activated Akt mediates suppression of apoptosis following polyamine depletion. Depletion of cellular polyamines by alpha-difluoromethylornithine induced levels of phosphorylated Akt and increased Akt kinase activity, although it had no effect on expression of total Akt, pERK, p38, and Bcl-2 proteins. This activated Akt was associated with both decreased levels of active caspase-3 and increased resistance to tumor necrosis factor-alpha/cycloheximide-induced apoptosis. Inactivation of Akt by either treatment with LY294002 or ectopic expression of a dominant negative Akt mutant (DNMAkt) not only enhanced the caspase-3 activation in polyamine-deficient cells but also prevented the increased resistance to tumor necrosis factor-alpha/cycloheximide-induced apoptosis. Phosphorylation of glycogen synthase kinase-3, a downstream target of Akt, was also increased in alpha-difluoromethylornithine-treated cells, which was prevented by inactivation of Akt by LY294002 or DNMAkt overexpression. These results indicate that polyamine depletion induces the Akt activation mediating suppression of apoptosis via inhibition of caspase-3 in normal intestinal epithelial cells.  相似文献   

15.
Protein kinase B (PKB/Akt) plays a pivotal role in signaling pathways downstream of phosphatidylinositol 3-kinase, regulating fundamental processes such as cell survival, cell proliferation, differentiation, and metabolism. PKB/Akt activation is regulated by phosphoinositide phospholipid-mediated plasma membrane anchoring and by phosphorylation on Thr-308 and Ser-473. Whereas the Thr-308 site is phosphorylated by PDK-1, the identity of the Ser-473 kinase has remained unclear and controversial. The integrin-linked kinase (ILK) is a potential regulator of phosphorylation of PKB/Akt on Ser-473. Utilizing double-stranded RNA interference (siRNA) as well as conditional knock-out of ILK using the Cre-Lox system, we now demonstrate that ILK is essential for the regulation of PKB/Akt activity. ILK knock-out had no effect on phosphorylation of PKB/Akt on Thr-308 but resulted in almost complete inhibition of phosphorylation on Ser-473 and significant inhibition of PKB/Akt activity, accompanied by significant stimulation of apoptosis. The inhibition of PKB/Akt Ser-473 phosphorylation was rescued by kinase-active ILK but not by a kinase-deficient mutant of ILK, suggesting a role for the kinase activity of ILK in the stimulation of PKB/Akt phosphorylation. ILK knock-out also resulted in the suppression of phosphorylation of GSK-3beta on Ser-9 and cyclin D1 expression. These data establish ILK as an essential upstream regulator of PKB/Akt activation.  相似文献   

16.
The product of the herpes simplex virus 1 (HSV-1) US3 gene is a multifunctional serine-threonine protein kinase that can block apoptosis induced by proapoptotic cellular proteins, exogenous agents, or replication-defective viruses. Earlier studies showed that the U(S)3 kinase activates and functionally overlaps cellular protein kinase A (PKA). In this study we examined the status of phosphatidylinositol 3-kinase [PI3K] and of its effector, protein kinase B/Akt (PKB/Akt), a component of a major pathway of mammalian antiapoptotic signaling systems. We report the following. (i) Infection of target cells with HSV-1 induces transient phosphorylation of serine 473 of PKB/Akt early in infection, with a mechanism that is dependent on PI3K. Inhibition of PI3K induced apoptosis in mock-infected or deltaU(S)3 mutant-virus-infected but not in wild-type-virus-infected cells and reduced the accumulation of specific viral gene products, including the U(S)3 protein kinase, but had a marginal effect on virus yields. (ii) At later times after infection, the total amounts of PKB/Akt decreased and phosphorylated PKB/Akt forms disappeared in a U(S)3-dependent and protein phosphatase 2A-independent manner. (iii) Activation of PKA by forskolin did not mediate significant dephosphorylation of PKB/Akt. Our results are consistent with the model that PKB/Akt is activated early in infection and acts to block apoptosis in infected cells prior to the accumulation of U(S)3 protein kinase and that it persists and continues to function as an antiapoptotic protein in the absence of U(S)3 but becomes redundant or even inimical once U(S)3 protein kinase accumulates in effective amounts.  相似文献   

17.
Protein kinase B (PKB/Akt) is a regulator of cell survival and apoptosis. To become fully activated, PKB/Akt requires phosphorylation at two sites, threonine 308 and serine 473, in a phosphatidylinositol (PI) 3-kinase-dependent manner. The kinase responsible for phosphorylation of threonine 308 is the PI 3-kinase-dependent kinase-1 (PDK-1), whereas phosphorylation of serine 473 has been suggested to be regulated by PKB/Akt autophosphorylation in a PDK-1-dependent manner. However, the integrin-linked kinase (ILK) has also been shown to regulate phosphorylation of serine 473 in a PI 3-kinase-dependent manner. Whether ILK phosphorylates this site directly or functions as an adapter molecule has been debated. We now show by in-gel kinase assay and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry that biochemically purified ILK can phosphorylate PKB/Akt directly. Co-immunoprecipitation analysis of cell extracts demonstrates that ILK can complex with PKB/Akt as well as PDK-1 and that ILK can disrupt PDK-1/PKB association. The amino acid residue serine 343 of ILK within the activation loop is required for kinase activity as well as for its interaction with PKB/Akt. Mutational analysis of ILK further shows a crucial role for arginine 211 of ILK within the phosphoinositide phospholipid binding domain in the regulation of PKB- serine 473 phosphorylation. A highly selective small molecule inhibitor of ILK activity also inhibits the ability of ILK to phosphorylate PKB/Akt in vitro and in intact cells. These data demonstrate that ILK is an important upstream kinase for the regulation of PKB/Akt.  相似文献   

18.
19.
The protein kinase B/Akt signalling pathway in human malignancy   总被引:34,自引:0,他引:34  
Protein kinase B or Akt (PKB/Akt) is a serine/threonine kinase, which in mammals comprises three highly homologous members known as PKBalpha (Akt1), PKBbeta (Akt2), and PKBgamma (Akt3). PKB/Akt is activated in cells exposed to diverse stimuli such as hormones, growth factors, and extracellular matrix components. The activation mechanism remains to be fully characterised but occurs downstream of phosphoinositide 3-kinase (PI-3K). PI-3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), a lipid second messenger essential for the translocation of PKB/Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase-1 (PDK-1) and possibly other kinases. PKB/Akt phosphorylates and regulates the function of many cellular proteins involved in processes that include metabolism, apoptosis, and proliferation. Recent evidence indicates that PKB/Akt is frequently constitutively active in many types of human cancer. Constitutive PKB/Akt activation can occur due to amplification of PKB/Akt genes or as a result of mutations in components of the signalling pathway that activates PKB/Akt. Although the mechanisms have not yet been fully characterised, constitutive PKB/Akt signalling is believed to promote proliferation and increased cell survival and thereby contributing to cancer progression. This review surveys recent developments in understanding the mechanisms and consequences of PKB/Akt activation in human malignancy.  相似文献   

20.
Vitiligo is an acquired and progressive hypomelanotic disease that manifests as circumscribed depigmented patches on the skin. The aetiology of vitiligo remains unclear, but recent experimental data underline the interactions between melanocytes and other typical skin cells, particularly keratinocytes. Our previous results indicate that keratinocytes from perilesional skin show the features of damaged cells. Sirtuins (silent mating type information regulation 2 homolog) 1, well‐known modulators of lifespan in many species, have a role in gene repression, metabolic control, apoptosis and cell survival, DNA repair, development, inflammation, neuroprotection and healthy ageing. In the literature there is no evidence for SIRT1 signalling in vitiligo and its possible involvement in disease progression. Here, biopsies were taken from the perilesional skin of 16 patients suffering from non‐segmental vitiligo and SIRT1 signalling was investigated in these cells. For the first time, a new SIRT1/Akt, also known as Protein Kinase B (PKB)/mitogen‐activated protein kinase (MAPK) signalling has been revealed in vitiligo. SIRT1 regulates MAPK pathway via Akt‐apoptosis signal‐regulating kinase‐1 and down‐regulates pro‐apoptotic molecules, leading to decreased oxidative stress and apoptotic cell death in perilesional vitiligo keratinocytes. We therefore propose SIRT1 activation as a novel way of protecting perilesional vitiligo keratinocytes from damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号