首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of human pluripotent stem cells, including embryonic and induced pluripotent stem cells, in therapeutic applications will require the development of robust, scalable culture technologies for undifferentiated cells. Advances made in large-scale cultures of other mammalian cells will facilitate expansion of undifferentiated human embryonic stem cells (hESCs), but challenges specific to hESCs will also have to be addressed, including development of defined, humanized culture media and substrates, monitoring spontaneous differentiation and heterogeneity in the cultures, and maintaining karyotypic integrity in the cells. This review will describe our current understanding of environmental factors that regulate hESC self-renewal and efforts to provide these cues in various scalable bioreactor culture systems.  相似文献   

2.
Feeder layer- and serum-free culture of human embryonic stem cells   总被引:44,自引:0,他引:44  
In addition to their contribution to the research on early human development, human embryonic stem (hES) cells may also be used for cell-based therapies. Traditionally, these cells have been cultured on mouse embryonic fibroblast feeder layers, which allow their continuous growth in an undifferentiated state. However, the use of hES cells in human therapy requires an animal-free culture system, in which exposure to mouse retroviruses is avoided. In this study we present a novel feeder layer-free culture system for hES cells, based on medium supplemented with 15% serum replacement, a combination of growth factors including transforming growth factor beta1 (TGFbeta1), leukemia inhibitory factor, basic fibroblast growth factor, and fibronectin matrix. Human ES cells grown in these conditions maintain all ES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of the three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. The culture system presented here has two major advantages: 1) application of a well-defined culture system for hES cells and 2) reduced exposure of hES cells to animal pathogens. The feeder layer-free culture system reported here aims at facilitating research practices and providing a safer alternative for future clinical applications of hES cells.  相似文献   

3.
4.
Feeder-independent culture of human embryonic stem cells   总被引:1,自引:0,他引:1  
  相似文献   

5.
The culture of human embryonic stem cells (hESCs) is limited, both technically and with respect to clinical potential, by the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. The concern over xenogeneic contaminants from the mouse feeder cells may restrict transplantation to humans and the variability in MEFs from batch-to-batch and laboratory-to-laboratory may contribute to some of the variability in experimental results. Finally, use of any feeder layer increases the work load and subsequently limits the large-scale culture of human ES cells. Thus, the development of feeder-free cultures will allow more reproducible culture conditions, facilitate scale-up and potentiate the clinical use of cells differentiated from hESC cultures. In this review, we describe various methods tested to culture cells in the absence of MEF feeder layers and other advances in eliminating xenogeneic products from the culture system.  相似文献   

6.
Characterization and culture of human embryonic stem cells   总被引:15,自引:0,他引:15  
Human embryonic stem cells have been defined as self-renewing cells that can give rise to many types of cells of the body. How and whether these cells can be manipulated to replace cells in diseased tissues, used to screen drugs and toxins, or studied to better understand normal development, however, depends on knowing more about their fundamental properties. Many different human embryonic stem cell lines--which are pluripotent, proliferate indefinitely in vitro and maintain a normal, euploid karyotype over extended culture--have now been derived, but whether these cell lines are in fact equivalent remains unclear. It will therefore be important to define robust criteria for the assessment of both existing and newly derived cell lines and for the validation of new culture conditions.  相似文献   

7.
There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories.  相似文献   

8.
Parker A  Shang H  Khurgel M  Katz A 《Cytotherapy》2007,9(7):637-646
BACKGROUND: Adipose tissue provides an easily accessible and abundant source of putative stem cells for translational clinical research. Currently prevalent culture techniques include the use of FBS, a highly variable and undefined component, which brings with it the potential for adverse patient reactions. In an effort to eliminate the use of animal products in human adipose stem cell (ASC) cultures, we have developed two new culture methods, a very low human serum expansion medium and a completely serum-free medium. METHODS: Through serial testing, a highly enriched medium formulation was developed for use with and without the addition of 0.5% human serum, an amount easily obtainable from autologous blood draws. RESULTS: Very low-serum culture yielded population-doubling times averaging 1.86 days in early passage, while the serum-free formulation was associated with less robust cell growth, with doubling times averaging 5.79 days. ASC in both conditions maintained its ability to differentiate into adipo-, chondro- and osteogenic lineages in vitro, despite lower expression of CD34 in early passage. Expression of ALDH, HLA, CD133, CD184, and CD31 was comparable with that seen in cells cultured in 10% FBS. DISCUSSION: These newly developed culture conditions provide a unique environment within which to study ASCs without the interference of animal serum, and allow for the rapid expansion of autologous ASCs in culture in an animal product-free environment for use in human clinical trials.  相似文献   

9.
Regenerative medicine, relying on human embryonic stem cell (hESC) technology, opens promising new avenues for therapy of many severe diseases. However, this approach is restricted by limited production of the desired cells due to the refractory properties of hESC growth in vitro. It is further hindered by insufficient control of cellular stress, growth rates, and heterogeneous cellular states under current culture conditions. In this study, we report a novel cell culture method based on a non-colony type monolayer (NCM) growth. Human ESCs under NCM remain pluripotent as determined by teratoma assays and sustain the potential to differentiate into three germ layers. This NCM culture has been shown to homogenize cellular states, precisely control growth rates, significantly increase cell production, and enhance hESC recovery from cryopreservation without compromising chromosomal integrity. This culture system is simple, robust, scalable, and suitable for high-throughput screening and drug discovery.  相似文献   

10.
人胚胎干细胞培养系统的研究进展   总被引:2,自引:0,他引:2  
刘雪梅  朱桂金 《生命科学》2007,19(3):306-310
人胚胎干细胞(hESC)具有永久的自我更新和多潜能分化能力,可在一定条件下定向分化为三个胚层的各种细胞。这些特性使其在再生医学(细胞治疗)、药物筛选及早期胚胎发育研究中具有重要的应用前景;但人胚胎干细胞培养系统中大量的动物源性物质和复杂的未知成份大大阻碍了其医学应用价值,所以建立一个没有动物源物质、成份确定的人胚胎干细胞培养系统足非常重要的。本文简要介绍了为适应hESC临床应用和基础研究的需要,改良其培养系统的研究进展。  相似文献   

11.
Serum-free differentiation protocols of human embryonic stem cells (hESCs) offer the ability to maximize reproducibility and to develop clinically applicable therapies. We developed a high-throughput, 96-well plate, four-color flow cytometry-based assay to optimize differentiation media cocktails and to screen a variety of conditions. We were able to differentiate hESCs to all three primary germ layers, screen for the effect of a range of activin A, BMP4, and VEGF concentrations on endoderm and mesoderm differentiation, and perform RNA-interference (RNAi)-mediated knockdown of a reporter gene during differentiation. Cells were seeded in suspension culture and embryoid bodies were induced to differentiate to the three primary germ layers for 6 days. Endoderm (CXCR4(+)KDR(-)), mesoderm (KDR(+)SSEA-3(-)), and ectoderm (SSEA-3(+)NCAM(+)) differentiation yields for H9 cells were 80 ± 11, 78 ± 7, and 41 ± 9%, respectively. Germ layer identities were confirmed by quantitative PCR. Activin A, BMP4, and bFGF drove differentiation, with increasing concentrations of activin A inducing higher endoderm yields and increasing BMP4 inducing higher mesoderm yields. VEGF drove lateral mesoderm differentiation. RNAi-mediated knockdown of constitutively expressed red fluorescent protein did not affect endoderm differentiation. This assay facilitates the development of serum-free protocols for hESC differentiation to target lineages and creates a platform for screening small molecules or RNAi during ESC differentiation.  相似文献   

12.
We have systematically developed single cell-inoculated suspension cultures of human embryonic stem cells (hESC) in defined media. Cell survival was dependent on hESC re-aggregation. In the presence of the Rho kinase inhibitor Y-27632 (Ri) only ~ 44% of the seeded cells were rescued, but an optimized heat shock treatment combined with Ri significantly increased cell survival to ~ 60%. Mechanistically, our data suggest that E-cadherin plays a role in hESC aggregation and that dissociation and re-aggregation upon passaging functions as a purification step towards a pluripotency markers-enriched population. Mass expansion of hESC was readily achieved by up-scaling 2 ml cultures to serial passaging in 50 ml spinner flasks. A media comparison revealed that mTeSR was superior to KnockOut-SR in supporting cell proliferation and pluripotency. Persistent expression of pluripotency markers was achieved for two lines (hES2, hES3) that were used at higher passages (> 86). In contrast, rapid down regulation of Oct4, Tra-1-60, and SSEA4 was observed for ESI049, a clinically compliant line, used at passages 20-36. The up-scaling strategy has significant potential to provide pluripotent cells on a clinical scale. Nevertheless, our data also highlights a significant line-to-line variability and the need for a critical assessment of novel methods with numerous relevant cell lines.  相似文献   

13.
Human embryonic stem cells (hESCs) can serve as an unlimited cell source for cellular transplantation and tissue engineering due to their prolonged proliferation capacity and their unique ability to differentiate into derivatives of all three-germ layers. In order to reliably and safely produce hESCs, use of reagents that are defined, qualified, and preferably derived from a non-animal source is desirable. Traditionally, mouse embryonic fibroblasts (MEFs) have been used as feeder cells to culture undifferentiated hESCs. We recently reported a scalable feeder-free culture system using medium conditioned by MEFs. The base and conditioned medium (CM) still contain unknown bovine and murine-derived components, respectively. In this study, we report the development of a hESC culture system that utilizes a commercially available serum-free medium (SFM) containing human sourced and recombinant proteins supplemented with recombinant growth factor(s) and does not require conditioning with feeder cells. In this system, which employs human laminin coated surface and high concentration of hbFGF, the hESCs maintained undifferentiated hESC morphology and had a twofold increase in expansion compared to hESCs grown in MEF-CM. The hESCs also expressed surface markers SSEA-4 and Tra-1-60 and maintained expression of hTERT, Oct4, and Cripto genes similar to cells cultured in MEF-CM. In addition, hESCs maintained in this culture system were able to differentiate in vitro and in vivo into cells of all three-germ layers. The cells maintained a normal karyotype after prolonged culture in SFM. In summary, this study demonstrates that the hESCs cultured in defined non-conditioned serum-free medium (NC-SFM) supplemented with growth factor(s) retain the characteristics and replicative potential of hESCs. The use of defined culture system with NC-SFM on human laminin simplifies scale-up and allows for reproducible generation of hESCs under defined and controlled conditions that would serve as a starting material for production of hESC derived cells for therapeutic use.  相似文献   

14.
目的开发一种新的培养人胚胎干细胞(hESCs)的包被基质,使hESCs的培养更加简便。方法用甲醇固定的小鼠胚胎成纤维细胞(MEF)作为包被基质,人胚胎干细胞系X-01在该基质上生长,每隔5~6 d传代一次,培养10代后,对人胚胎干细胞特性进行检测,包括细胞形态、碱性磷酸酶染色、相关多能性基因的表达和分化能力。结果 hESCs在新的基质上生长良好,经10次传代后仍能保持典型的hESCs克隆形态。碱性磷酸酶染色阳性,免疫荧光染色Oct4、SSEA4、Tra-1-60为阳性,体外分化可形成拟胚体。结论此种固定的基质可以大量制备,长期保存,并可以长期维持hESCs的未分化状态,为人胚胎干细胞的体外扩增探索出了一个新的途径。  相似文献   

15.
Development of definitive endoderm from embryonic stem cells in culture   总被引:30,自引:0,他引:30  
The cellular and molecular events regulating the induction and tissue-specific differentiation of endoderm are central to our understanding of the development and function of many organ systems. To define and characterize key components in this process, we have investigated the potential of embryonic stem (ES) cells to generate endoderm following their differentiation to embryoid bodies (EBs) in culture. We found that endoderm can be induced in EBs, either by limited exposure to serum or by culturing in the presence of activin A (activin) under serum-free conditions. By using an ES cell line with the green fluorescent protein (GFP) cDNA targeted to the brachyury locus, we demonstrate that endoderm develops from a brachyury(+) population that also displays mesoderm potential. Transplantation of cells generated from activin-induced brachyury(+) cells to the kidney capsule of recipient mice resulted in the development of endoderm-derived structures. These findings demonstrate that ES cells can generate endoderm in culture and, as such, establish this differentiation system as a unique murine model for studying the development and specification of this germ layer.  相似文献   

16.
‘Requirements for Human Embryonic Stem Cells’ is the first set of guidelines on human embryonic stem cells in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements and transportation requirements for human embryonic stem cells, which is applicable to the quality control for human embryonic stem cells. It was originally released by the China Society for Cell Biology on 26 February 2019 and was further revised on 30 April 2020. We hope that publication of these guidelines will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human embryonic stem cells for applications.  相似文献   

17.
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.  相似文献   

18.
19.
Mouse embryonic stem cell (ESC) lines, and more recently human ESC lines, have become valuable tools for studying early mammalian development. Increasing interest in ESCs and their differentiated progeny in drug discovery and as potential therapeutic agents has highlighted the fact that current two‐dimensional (2D) static culturing techniques are inadequate for large‐scale production. The culture of mammalian cells in three‐dimensional (3D) agitated systems has been shown to overcome many of the restrictions of 2D and is therefore likely to be effective for ESC proliferation. Using murine ESCs as our initial model, we investigated the effectiveness of different 3D culture environments for the expansion of pluripotent ESCs. Solohill Collagen, Solohill FACT, and Cultispher‐S microcarriers were employed and used in conjunction with stirred bioreactors. Initial seeding parameters, including cell number and agitation conditions, were found to be critical in promoting attachment to microcarriers and minimizing the size of aggregates formed. While all microcarriers supported the growth of undifferentiated mESCs, Cultispher‐S out‐performed the Solohill microcarriers. When cultured for successive passages on Cultispher‐S microcarriers, mESCs maintained their pluripotency, demonstrated by self‐renewal, expression of pluripotency markers and the ability to undergo multi‐lineage differentiation. When these optimized conditions were applied to unweaned human ESCs, Cultispher‐S microcarriers supported the growth of hESCs that retained expression of pluripotency markers including SSEA4, Tra‐1–60, NANOG, and OCT‐4. Our study highlights the importance of optimization of initial seeding parameters and provides proof‐of‐concept data demonstrating the utility of microcarriers and bioreactors for the expansion of hESCs. Biotechnol. Bioeng. 2010;107:683–695. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis according to Plackett–Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence on the proliferation activity of the cells, while zinc and l-cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media for human embryonic stem cells (hESC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号