首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The genome of the nematode Caenorhabditis elegans encodes a surprisingly large and diverse superfamily of genes encoding Cys loop ligand-gated ion channels. Here we report the first cloning, expression, and pharmacological characterization of members of a family of anion-selective acetylcholine receptor subunits. Two subunits, ACC-1 and ACC-2, form homomeric channels for which acetylcholine and arecoline, but not nicotine, are efficient agonists. These channels are blocked by d-tubocurarine but not by alpha-bungarotoxin. We provide evidence that two additional subunits, ACC-3 and ACC-4, interact with ACC-1 and ACC-2. The acetylcholine-binding domain of these channels appears to have diverged substantially from the acetylcholine-binding domain of nicotinic receptors.  相似文献   

3.
Glutamate receptors are not only abundant and important mediators of fast excitatory synaptic transmission in vertebrates, but they also serve a similar function in invertebrates such as Drosophila and the nematode Caenorhabditis elegans. In C. elegans, an animal with only 302 neurons, 10 different glutamate receptor subunits have been identified and cloned. To study the ion channel properties of these receptor subunits, we recorded glutamate-gated currents from Xenopus oocytes that expressed either C. elegans glutamate receptor subunits or chimeric rat/C. elegans glutamate receptor subunits. The chimeras were constructed between the C. elegans glutamate receptor pore domains and either the rat kainate receptor subunit GluR6, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunit GluR1, or the N-methyl-d-aspartate (NMDA) receptor subunit NMDAR1-1a. Although native subunits were nonfunctional, 9 of 10 ion pores were found to conduct current upon transplantation into rat receptor subunits. A provisional classification of the C. elegans glutamate receptor subunits was attempted based on functionality of the chimeras. C. elegans glutamate receptor ion pores, at a position homologous to a highly conserved site critical for ion permeation properties in vertebrate glutamate receptor pores, contain amino acids not found in vertebrate glutamate receptors. We show that the pore-constricting Q/R site, which in vertebrate receptors determines calcium permeability and rectification properties of the ion channel, in C. elegans can be occupied by other amino acids, including, surprisingly, lysine and proline, without loss of these properties.  相似文献   

4.
Immunoblotting experiments using antibodies directed against the large collagenous cuticle proteins of Caenorhabditis elegans revealed a class of small collagenous proteins (CP) of apparent molecular weight 38,000-52,000 present during the L4 to adult molt. These CP are smaller than most vertebrate collagens characterized to date and share many characteristics with the small collagenous products translated in vitro from RNA isolated at this molt. C. elegans collagen genes, collagen-coding mRNA, and collagenous in vitro products that have been characterized are also small. Detection of small CP in vivo in C. elegans thus lends further support to the hypothesis that such small collagenous proteins are the primary gene product precursors to the larger collagenous proteins isolated from the C. elegans cuticle.  相似文献   

5.
Reynolds NK  Schade MA  Miller KG 《Genetics》2005,169(2):651-670
We used gain-of-function and null synaptic signaling network mutants to investigate the relationship of the G alpha(q) and G alpha(s) pathways to synaptic vesicle priming and to each other. Genetic epistasis studies using G alpha(q) gain-of-function and null mutations, along with a mutation that blocks synaptic vesicle priming and the synaptic vesicle priming stimulator phorbol ester, suggest that the G alpha(q) pathway generates the core, obligatory signals for synaptic vesicle priming. In contrast, the G alpha(s) pathway is not required for the core priming function, because steady-state levels of neurotransmitter release are not significantly altered in animals lacking a neuronal G alpha(s) pathway, even though these animals are strongly paralyzed as a result of functional (nondevelopmental) defects. However, our genetic analysis indicates that these two functionally distinct pathways converge and that they do so downstream of DAG production. Further linking the two pathways, our epistasis analysis of a ric-8 null mutant suggests that RIC-8 (a receptor-independent G alpha guanine nucleotide exchange factor) is required to maintain both the G alpha(q) vesicle priming pathway and the neuronal G alpha(s) pathway in a functional state. We propose that the neuronal G alpha(s) pathway transduces critical positional information onto the core G alpha(q) pathway to stabilize the priming of selected synapses that are optimal for locomotion.  相似文献   

6.
Redox status changes exert critical impacts on necrotic/apoptotic and normal cellular processes. We report here a widely expressed Ca2+-permeable cation channel, LTRPC2, activated by micromolar levels of H2O2 and agents that produce reactive oxygen/nitrogen species. This sensitivity of LTRPC2 to redox state modifiers was attributable to an agonistic binding of nicotinamide adenine dinucleotide (beta-NAD+) to the MutT motif. Arachidonic acid and Ca2+ were important positive regulators for LTRPC2. Heterologous LTRPC2 expression conferred susceptibility to death on HEK cells. Antisense oligonucleotide experiments revealed physiological involvement of "native" LTRPC2 in H2O2- and TNFalpha-induced Ca2+ influx and cell death. Thus, LTRPC2 represents an important intrinsic mechanism that mediates Ca2+ and Na+ overload in response to disturbance of redox state in cell death.  相似文献   

7.
8.
9.
Correct placement and orientation of the mitotic spindle is essential for segregation of localized components and positioning of daughter cells. Although these processes are important in many cells, few factors that regulate spindle placement are known. Previous work has shown that GPB-1, the Gbeta subunit of a heterotrimeric G protein, is required for orientation of early cell division axes in C. elegans embryos. Here we show that GOA-1 (a Galphao) and the related GPA-16 are the functionally redundant Galpha subunits and that GPC-2 is the relevant Ggamma subunit that is required for spindle orientation in the early embryo. We show that Galpha and Gbetagamma are involved in controlling distinct microtubule-dependent processes. Gbetagamma is important in regulating migration of the centrosome around the nucleus and hence in orientating the mitotic spindle. Galpha is required for asymmetric spindle positioning in the one-celled embryo.  相似文献   

10.
Heterotrimeric G-proteins are integral to a conserved regulatory module that influences metazoan asymmetric cell division (ACD). In the Caenorhabditis elegans zygote, GOA-1 (Galpha(o)) and GPA-16 (Galpha(i)) are involved in generating forces that pull on astral microtubules and position the spindle asymmetrically. GPA-16 function has been analyzed in vivo owing notably to a temperature-sensitive allele gpa-16(it143), which, at the restrictive temperature, results in spindle orientation defects in early embryos. Here we identify the structural basis of gpa-16(it143), which encodes a point mutation (G202D) in the switch II region of GPA-16. Using Galpha(i1)(G202D) as a model in biochemical analyses, we demonstrate that high temperature induces instability of the mutant Galpha. At the permissive temperature, the mutant Galpha was stable upon GTP binding, but switch II rearrangement was compromised, as were activation state-selective interactions with regulators involved in ACD, including GoLoco motifs, RGS proteins, and RIC-8. We solved the crystal structure of the mutant Galpha bound to GDP, which indicates a unique switch II conformation as well as steric constraints that suggest activated GPA-16(it143) is destabilized relative to wild type. Spindle severing in gpa-16(it143) embryos revealed that pulling forces are symmetric and markedly diminished at the restrictive temperature. Interestingly, pulling forces are asymmetric and generally similar in magnitude to wild type at the permissive temperature despite defects in the structure of GPA-16(it143). These normal pulling forces in gpa-16(it143) embryos at the permissive temperature were attributable to GOA-1 function, underscoring a complex interplay of Galpha subunit function in ACD.  相似文献   

11.
目的:建立一套适用于蛋白质双向电泳体系的线虫surface coat proteins(SCPs)样品制备技术,为今后研究线虫surfacecoat蛋白质组学及线虫病理生理学奠定基础.方法:以秀丽隐杆线虫(Caenorhabditis elegans)为研究材料,对比和分析不同的蛋白提取沉淀方法,进而采用SDS-PAGE电泳技术和双向电泳技术对所提蛋白进行评价.结果:通过35%乙醇结合TCA-丙酮沉淀法获得的质量较好的线虫SCPs,在12%的SDS-PAGE分析中该法提取的蛋白背景浅,蛋白条带多且清晰尖锐,含有丰富的蛋白信息量.通过双向电泳分析,可从提取的蛋白中鉴定出清晰蛋白点400多个.随机选择5个蛋白斑点,进行基质辅助激光解吸电离飞行时间质谱鉴定,鉴定得到高度匹配的已知线虫蛋白质2个.结论:所建立的方法可为今后研究线虫surface coat蛋白质组学及线虫病理生理学提供重要工具.  相似文献   

12.
13.
A cDNA corresponding to a known G protein alpha subunit, the alpha subunit of Go (Go alpha), was isolated and sequenced. The predicted amino acid sequence of C. elegans Go alpha is 80-87% identical to other Go alpha sequences. An mRNA that hybridizes to the C. elegans Go alpha cDNA can be detected on Northern blots. A C. elegans protein that crossreacts with antibovine Go alpha antibody can be detected on immunoblots. A cosmid clone containing the C. elegans Go alpha gene (goa-1) was isolated and mapped to chromosome I. The genomic fragments of three other C. elegans G protein alpha subunit genes (gpa-1, gpa-2, and gpa-3) have been isolated using the polymerase chain reaction. The corresponding cosmid clones were isolated and mapped to disperse locations on chromosome V. The sequences of two of the genes, gpa-1 and gpa-3, were determined. The predicted amino acid sequences of gpa-1 and gpa-3 are only 48% identical to each other. Therefore, they are likely to have distinct functions. In addition they are not homologous enough to G protein alpha subunits in other organisms to be classified. Thus C. elegans has G proteins that are identifiable homologues of mammalian G proteins as well as G proteins that appear to be unique to C. elegans. Study of identifiable G proteins in C. elegans may result in a further understanding of their function in other organisms, whereas study of the novel G proteins may provide an understanding of unique aspects of nematode physiology.  相似文献   

14.
15.
The KH domain protein MEX-3 is central to the temporal and spatial control of PAL-1 expression in the C. elegans early embryo. PAL-1 is a Caudal-like homeodomain protein that is required to specify the fate of posterior blastomeres. While pal-1 mRNA is present throughout the oocyte and early embryo, PAL-1 protein is expressed only in posterior blastomeres, starting at the four-cell stage. To better understand how PAL-1 expression is regulated temporally and spatially, we have identified MEX-3 interacting proteins (MIPs) and characterized in detail two that are required for the patterning of PAL-1 expression. RNA interference of MEX-6, a CCCH zinc-finger protein, or SPN-4, an RNA recognition motif protein, causes PAL-1 to be expressed in all four blastomeres starting at the four-cell stage. Genetic analysis of the interactions between these mip genes and the par genes, which provide polarity information in the early embryo, defines convergent genetic pathways that regulate MEX-3 stability and activity to control the spatial pattern of PAL-1 expression. These experiments suggest that par-1 and par-4 affect distinct processes. par-1 is required for many aspects of embryonic polarity, including the restriction of MEX-3 and MEX-6 activity to the anterior blastomeres. We find that PAL-1 is not expressed in par-1 mutants, because MEX-3 and MEX-6 remain active in the posterior blastomeres. The role of par-4 is less well understood. Our analysis suggests that par-4 is required to inactivate MEX-3 at the four-cell stage. Thus, PAL-1 is not expressed in par-4 mutants because MEX-3 remains active in all blastomeres. We propose that MEX-6 and SPN-4 act with MEX-3 to translate the temporal and spatial information provided by the early acting par genes into the asymmetric expression of the cell fate determinant PAL-1.  相似文献   

16.
《Autophagy》2013,9(1):21-25
Expanded polyglutamine (polyQ) proteins aggregate intracellularly in Huntington’s disease and other neurodegenerative disorders. The lysosomal degradation pathway, autophagy, is known to promote clearance of polyQ protein aggregates in cultured cells. Moreover, basal autophagy in neuronal cells in mice prevents neurodegeneration by suppressing the accumulation of abnormal intracellular proteins. However, it is not yet known whether autophagy genes play a role in vivo in protecting against disease caused by mutant aggregate-prone, expanded polyQ proteins. To examine this question, we used two models of polyQ-induced toxicity in C. elegans, including the expression of polyQ40 aggregates in muscle and the expression of a human huntingtin disease fragment containing a polyQ tract of 150 residues (Htn-Q150) in ASH sensory neurons. Here, we show that genetic inactivation of autophagy genes accelerates the accumulation of polyQ40 aggregates in C. elegans muscle cells and exacerbates polyQ40-induced muscle dysfunction. Autophagy gene inactivation also increases the accumulation of Htn-Q150 aggregates in C. elegans ASH sensory neurons and results in enhanced neurodegeneration. These data provide in vivo genetic evidence that autophagy genes suppress the accumulation of polyQ aggregates and protect cells from disease caused by polyQ toxicity.  相似文献   

17.
Reverse genetic analysis was performed on the Caenorhabditis elegans 26S proteasome subunit genes by double-stranded RNA-mediated interference (RNAi). Embryonic and post-embryonic lethality was caused by interference of all of the eight tested 20S core subunits and all of the 19S regulatory particle subunits except for Ce-Rpn9, Ce-Rpn10, and Ce-Rpn12, where RNAi caused no abnormality. However, synthetic suppression of Ce-Rpn10 and Ce-Rpn12 was lethal, whereas neither the combination of Ce-Rpn9 with Ce-Rpn10 nor with Ce-Rpn12 resulted in abnormalities in RNAi. These results indicate that the 26S proteasome is indispensable for embryogenesis and post-embryonic development, although Ce-Rpn9, Ce-Rpn10, and Ce-Rpn12 are not essential, at least under the conditions used. Ce-Rpn10 and Ce-Rpn12 are considered to compensate for the suppression of each other.  相似文献   

18.
19.
We have identified a family of ancillary subunits of K(+) channels in Caenorhabditis elegans. MPS-1 and its related members MPS-2, MPS-3, and MPS-4 are detected in the nervous system of the nematode. Electrophysiological analysis in ASE neurons and mammalian cells and epigenetic inactivation by double-stranded RNA interference (RNAi) in vivo show that each MPS can associate with and functionally endow the voltage-gated K(+) channel KVS-1. In the chemosensory neuron ADF, three different MPS subunits combine with KVS-1 to form both binary (MPS-1.KVS-1) and ternary (MPS-2.MPS-3.KVS-1) complexes. RNAi of mps-2, mps-3, or both, enhance the taste of the animal for sodium without altering the susceptibility to other attractants. When sodium is introduced in the test plate as background or as antagonist attractant, the nematode loses the ability to recognize a second attractant. Thus, it appears that the chemosensory apparatus of C. elegans uses sensory thresholds and that a voltage-gated K(+) channel is specifically required for this mechanism.  相似文献   

20.
The collagen prolyl 4-hydroxylases (P4Hs, EC ) play a critical role in the synthesis of the extracellular matrix. The enzymes characterized from vertebrates and Drosophila are alpha(2)beta(2) tetramers, in which protein disulfide isomerase (PDI) serves as the beta subunit. Two conserved alpha subunit isoforms, PHY-1 and PHY-2, have been identified in Caenorhabditis elegans. We report here that three unique P4H forms are assembled from these polypeptides and the single beta subunit PDI-2, both in a recombinant expression system and in vivo, namely a PHY-1/PHY-2/(PDI-2)(2) mixed tetramer and PHY-1/PDI-2 and PHY-2/PDI-2 dimers. The mixed tetramer is the main P4H form in wild-type C. elegans but phy-2-/- and phy-1-/- (dpy-18) mutant nematodes can compensate for its absence by increasing the assembly of the PHY-1/PDI-2 and PHY-2/PDI-2 dimers, respectively. All three of the mixed tetramer-forming polypeptides PHY-1, PHY-2, and PDI-2 are coexpressed in the cuticle collagen-synthesizing hypodermal cells. The catalytic properties of the mixed tetramer are similar to those of other P4Hs, and analogues of 2-oxoglutarate were found to produce severe temperature-dependent effects on P4H mutant strains. Formation of the novel mixed tetramer was species-specific, and studies with hybrid recombinant PHY polypeptides showed that residues Gln(121)-Ala(271) and Asp(1)-Leu(122) in PHY-1 and PHY-2, respectively, are critical for its assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号