首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Burst kinetics in the inactivation of alpha-chymotrypsin by halo enol lactones 1 and 2 was observed. These results are consistent with a kinetic scheme that includes partitioning of the first acyl enzyme between transient inhibition and permanent inactivation. Partition ratios were estimated from the measured rates of the irreversible inactivation and the rates of deacylation of the second acyl enzyme. Halo enol lactones with a large burst resulted in small partition ratios, indicating a high potency of inactivation. We also observed enantioselectivity in the burst of inactivation such that the R enantiomer of lactone 1 showed a large burst, while the S enantiomer showed a little burst. This suggests that it is the R enantiomer whose binding is better suited for the covalent derivatization of the enzyme, or whose reactive halomethyl group is in an unfavorable position for the hydrolysis by water.  相似文献   

2.
With the hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioesters in water-saturated isooctane as a model system, improvements of the specific lipase activity and thermal stability were found when a crude Carica papaya lipase (CPL) was partially purified and employed as the biocatalyst. The partially purified Carica papaya lipase (PCPL) was furthermore explored as an effective enantioselective biocatalyst for the hydrolytic resolution of (R,S)-profen thioesters in water-saturated organic solvents. The kinetic analysis in water-saturated isooctane indicated that both acyl donor and acyl acceptor have profound influences on the lipase activity, E-value, and enantioselectivity. Inversion of the enantioselectivity from (S)- to (R)-thioester was found for (R,S)-fenoprofen and (R,S)-ketoprofen thioesters that contained a bulky substituent at the meta-position of 2-phenyl moiety of the acyl part. Kinetic constants for the acylation step were furthermore estimated for elucidating the kinetic data and postulating an active site model. The thermodynamic analysis indicated that the enantiomer discrimination was driven by the difference of activation enthalpy (DeltaDeltaH) and that of activation entropy (DeltaDeltaS), yet the latter was dominated for most of the reacting systems. The postulated active site model was supported from the variation of DeltaDeltaH and DeltaDeltaS with the acyl moiety, in which a good linear enthalpy-entropy compensation relationship was also illustrated. A comparison of the performances between Candida rugosa lipase (CRL) and PCPL indicated that PCPL was superior to CRL in terms of the better thermal stability, similar or better lipase activity for the fast-reacting substrate, time-course-stability, and lower enzyme cost.  相似文献   

3.
Oh HS  Park LS  Kawakami Y 《Chirality》2003,15(7):646-653
Perhexyloligosilanes (R,R)-(+)-MeNpPhSi*(Hex(2)Si)(n)Si*PhNpMe (n = 2; (R,R)-(+)-4a, n = 4; (R,R)-(+)-6a, n = 6; (R,R)-(+)-8a) with chiral methyl(1-naphthyl)phenylsilyl terminals were synthesized and characterized. The absorption wavelengths lambda(max) by (1)L(a,Ph) transition of phenyl chromophore conjugated with oligosilane units in (R,R)-(+)-4a - (R,R)-(+)-8a show bathochromic shift of about 3-4 nm compared with those of the alpha,omega-phenyl substituted perhexyloligosilanes Ph(Hex(2)Si)(m)Ph (m = 4; 4b, m = 6; 6b, m = 8; 8b) having the same silicon chain length. Longer chain length induces the separated lambda(max) of (1)L(a,Ph) from (1)B(b,Np) of naphthyl chromophore with positive exciton chiralities. In (R,R)-(+)-8a, although the extremum wavelengths lambda(ext) of exciton coupling between (1)B(b,Np) and (1)L(a,Ph) are separated by about 80 nm, the compound retains the positive exciton chirality, which provides definite information on the absolute configuration of terminal chiral silicon atoms. Bulky terminal substituents and lowering the temperature affect the conformation of the main chain, inducing extended silicon backbone structure.  相似文献   

4.
Lou WY  Zong MH 《Chirality》2006,18(10):814-821
Efficient enantioselective acylation of (R,S)-1-trimethylsilylethanol {(R,S)-1-TMSE} with vinyl acetate catalyzed by immobilized lipase from Candida antarctica B (i.e., Novozym 435) was successfully conducted in ionic liquids (ILs). A remarkable enhancement in the initial rate and the enantioselectivity of the acylation was observed by using ILs as the reaction media when compared to the organic solvents tested. Also, the activity, enantioselectivity, and thermostability of Novozym 435 increased with increasing hydrophobicity of ILs. Of the six ILs examined, the IL C4MIm.PF6 gave the fastest initial rate and the highest enantioselectivity, and was consequently chosen as the favorable medium for the reaction. The optimal molar ratio of vinyl acetate to (R,S)-1-TMSE, water activity, and reaction temperature range were 4:1, 0.75, and 40 -50 degrees C, respectively, under which the initial rate and the enantioselectivity (E value) were 27.6 mM/h and 149, respectively. After a reaction time of 6 h, the ee of the remaining (S)-1-TMSE reached 97.1% at the substrate conversion of 50.7%. Additionally, Novozym 435 was effectively recycled and reused in C4MIm.PF6 for five consecutive runs without substantial lose in activity and enantioselectivity. The preparative scale kinetic resolution of (R,S)-1-TMSE in C4MIm.PF6 is shown to be very promising and useful for the industrial production of enantiopure (S)-1-TMSE.  相似文献   

5.
Resonance Raman spectra were obtained for the acylenzyme 4-dimethylamino-3-nitro(alpha-benzamido)cinnamoyl-papain prepared using the chromophoric substrate methyl 4-dimethylamino-3-nitro(alpha-benzamido)cinnamate. These spectra contained vibrational spectral data of the acyl residue while covalently attached to the active site and could be used to follow directly acylation and deacylation kinetics. Spectra were obtained at pH values ranging from those where the acyl-enzyme is relatively stable (pH 3.0, tau 1/2 congruent to 800 s) to those where it is relatively unstable (pH 9.2, tau 1/2 congruent to 223 s). Throughout this range acyl-enzyme spectra differed completely from that of the free substrate or the product (4-dimethylamino-3-nitro(alpha-benzamido)cinnamic acid) indicating that a structural change occurred on combination with the active site. The spectra are consistent with rearrangement of the alpha-benzamido group in the bound substrate, -NH--C(==O)Ph becoming --N==C(--OX)Ph, where the bonding to oxygen is unknown. Superimposed on these large differences, small changes in acyl-enzyme spectra also occurred as pH was raised to decrease the half-life. All of the above spectral perturbations are consistent with a structural change in the acyl-enzyme which precedes the rate-determining step in deacylation. Thus, deacylation proceeds from an acyl residue structure differing from that of the substrate in solution. Upon acid denaturation the spectrum characteristic of the intermediate reverts to one closely resembling the substrate, demonstrating that a functioning active site is necessary to produce the observed differences. Spectra in D2O of native acyl-enzyme were identical with those in H2O, indicating that the observed differences in rate constant were not due to solvent-induced structural changes. Activated papain purified by crystallization or by affinity chromatography formed the acyl-enzyme. However, the kinetics of formation and deacylation differed between these materials, as did the spectral properties. Small differences in active-site structure are considered to be responsible for this effect, and it is suggested that such spectral perturbations may be useful in directly relating small differences in structure of the substrate in the active site with corresponding differences in kinetics.  相似文献   

6.
Serpins (serine protease inhibitors) inhibit target proteases by forming a stable covalent complex in which the cleaved reactive site loop of the serpin is inserted into beta-sheet A of the serpin with concomitant translocation of the protease to the opposite of the initial binding site. Despite recent determination of the crystal structures of a Michaelis protease-serpin complex as well as a stable covalent complex, details on the kinetic mechanism remain unsolved mainly due to difficulties in measuring kinetic parameters of acylation, protease translocation, and deacylation steps. To address the problem, we applied a mathematical model developed on the basis of a suicide inhibition mechanism to the stopped-flow kinetics of fluorescence resonance energy transfer during complex formation between alpha(1)-antitrypsin, a prototype serpin, and proteases. Compared with the hydrolysis of a peptide substrate, acylation of the protease by alpha(1)-antitrypsin is facilitated, whereas deacylation of the acyl intermediate is strongly suppressed during the protease translocation. The results from nucleophile susceptibility of the acyl intermediate suggest strongly that the active site of the protease is already perturbed during translocation.  相似文献   

7.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R,25S)-3-O-(2,3-di-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-4-ene-3beta,6beta,8,15a,16beta,26-hexaol and (20R,24R,25S,22E)-3-O-(2,4-di-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-22-ene-3beta,4beta,6beta,8,15alpha,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R,22E)-3-O-(2,4-di-O-methyl-beta-D-xylopyranosyl)-26,27-di-nor-24-methyl-5alpha-cholest-22-ene-3beta,4beta,6beta,8,15alpha,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-beta-D-xylopyranosyl)-5alpha-cholestan-3beta,4beta,6beta,8,15alpha,24-hexaol, were isolated from the two starfish species. (20R,24S)-Salpha-Cholestan-3beta,6beta,15alpha,24-tetraol and (20R,24S)-5alpha-cholestan-3beta,6beta,8,15alpha,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

8.
1. A cell-free system from the protozoon Tetrahymena pyriformis was incubated with either [12-3H]squalene or (RS)-2,3-epoxy-2,3-dihydro-[12,13-3H]squalene. Squalene was cyclized into tetrahymanol whereas racemic squalene epoxide was transformed into gammacerane-3 alpha,21 alpha-diol and gammacerane-3 beta,21 alpha-diol. After cyclization of (RS)-2,3-epoxy-2,3-dihydro-[3-3H]squalene, both epimeric gammaceranediols were labelled with a tritium atom located at C-3, showing that no isomerization via a 3-oxo compound occurred. 2. The proton NMR spectra of the cyclization products of synthetic (2E, 22E)-(1,1,1,24,24,24-2H6)squalene and (RS)-(22E)-2,3-epoxy-2,3-dihydro-(1,1,1,24,24,24-2H6)squalene show that squalene and the (3S)enantiomer of its epoxide are cyclized in an all pre-chair conformation, whereas the (3R) enantiomer of squalene epoxide is cyclized in a pre-boat conformation as concerns the cycle A. 3. The squalene cyclase of T. pyriformis presents the same lack of substrate specificity as the cyclase of Acetobacter pasteurianum: in addition to squalene, its normal substrate, it also cyclizes both enantiomers of its epoxide. This conformational versatility is characteristic of squalene cyclases but no longer exists in the squalene epoxide cyclases from eukaryotes.  相似文献   

9.
Here we report a detailed procedure for the enzymatic kinetic resolution of 4-chloro-2-(1-hydroxyalkyl)pyridines, valuable precursors for the preparation of enantiomerically pure catalysts derived from 4-(N,N-dimethylamino)pyridine. Pseudomonas cepacia lipase shows excellent enantioselectivity in the acylation of the (R)-enantiomer at 30 degrees C and 250 r.p.m., with vinyl acetate as the acyl donor and tetrahydrofuran as the solvent. The reaction times for resolution of the pyridine derivatives depend on the structure of the selected substrate.  相似文献   

10.
Kao MF  Lu PY  Kao JY  Wang PY  Wu AC  Tsai SW 《Chirality》2012,24(1):60-66
The best reaction condition of Candida antartica lipase B as biocatalyst, 3-(2-pyridyl)pyrazole as leaving azole, and water-saturated methyl t-butyl ether as reaction medium at 45°C were first selected for performing the hydrolytic resolution of (R,S)-2-(4-chlorophenoxyl) azolides (1-4). In comparison with the kinetic resolution of (R,S)-2-phenylpropionyl 3-(2-pyridyl)pyrazolide or (R,S)-α-methoxyphenylacetyl 3-(2-pyridyl)pyrazolide at the same reaction condition, excellent enantioselectivity with more than two order-of-magnitudes higher activity for each enantiomer was obtained. The resolution was then extended to other (R,S)-3-(2-pyridyl)pyrazolides (5-7) containing 2-chloro, 3-chloro, or 2,4-dichloro substituent, giving good (E > 48) to excellent (E > 100) enantioselectivity. The thermodynamic analysis for 1, 2, and 4-7 demonstrates profound effects of the acyl or leaving moiety on varying enthalpic and entropic contributions to the difference of Gibbs free energies. A thorough kinetic analysis further indicates that on the basis of 6, the excellent enantiomeric ratio for 4 and 7 is due to the higher reactivity of (S)-4 and lower reactivity of (R)-7, respectively.  相似文献   

11.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee > 99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.  相似文献   

12.
A comparison has been made between the conversion of (32)P-labeled lysophosphatidyl ethanolamine (LPE) and lysophosphatidyl choline (LPC) to their respective acylated and deacylated derivatives by homogenates of rabbit polymorphonuclear leukocytes and alveolar macrophages. Synthesis of PE by both homogenates and of PC by macrophage homogenates proceeded to about the same extent and is attributed to direct acylation of the lyso compounds. At higher LPC concentrations formation of PC by leukocytes is far greater than by macrophages. The mechanism of this enhanced synthesis of PC, which is brought out by higher substrate concentrations, is believed to be a transfer of the acyl group of one LPC molecule to another. Under optimal conditions macrophage homogenates deacylated LPE to a greater extent than LPC, while the reverse was true for leukocyte homogenates. Albumin inhibited deacylation of LPC and its conversion to PC by leukocytes, perhaps by binding the substrate (2 moles of LPC per mole of albumin). Other effects of albumin-stimulation of deacylation and acylation of LPE by macrophages, inhibition of deacylation and acylation of LPE by leukocytes-remain unexplained.  相似文献   

13.
14.
We recently demonstrated (J Am Chem Soc 121:3334-3340, 1999) that enzymatic enantioselectivity in organic solvents can be markedly enhanced by temporarily enlarging the substrate via salt formation. In the present study, this approach was expanded by finding that, in addition to its size, the stereochemistry of the counterion can greatly affect the enantioselectivity enhancement. For example, the enantioselectivity [E = (k(cat)/K(M))(S)/(k(cat)/K(M))(R)] of crystalline Pseudomonas cepacia lipase in the propanolysis of phenylalanine methyl ester (PheOMe) in anhydrous acetonitrile was found to be 5.8 +/- 0.6; the E value doubled when PheOMe's salt with S mandelic acid was used as a substrate instead of the free ester, and rose sevenfold with R mandelic acid as a Bronsted-Lowry acid. Similar effects were observed with other bulky, but not petite, counterions. The greatest enantioselectivity enhancement was afforded by 10-camphorsulfonic acid: the E value increased to 18 +/- 2 for a salt with its R enantiomer and jumped to 53 +/- 4 for the S. These effects, also observed in other organic solvents, were explained by means of structure-based molecular modeling of the lipase-bound transition states of the substrate enantiomers and their diastereomeric salts.  相似文献   

15.
Human leukocyte elastase (HLE), a serine protease involved in inflammation and tissue degradation, can be irreversibly inactivated in a time- and concentration-dependent manner by ynenol lactones. Ynenol lactones that are alpha-unsubstituted do not inactivate but are alternate substrate inhibitors that are hydrolyzed by the enzyme. Ynenol lactones that are both substituted alpha to to the lactone carbonyl and unsubstituted at the acetylene terminus are rapid inactivators of HLE and inactivate pancreatic elastase and trypsin more slowly. 3-Benzyl-5(E)-(prop-2-ynylidene)tetrahydro-2-furanone inactivates HLE with biphasic kinetics and an apparent second-order rate of up to 22,000 M-1 s-1 (pH 7.8, 25 degrees C). The rate of inactivation is pH-dependent and is slowed by a competitive inhibitor. The partition ratio is 1.6 +/- 0.1. Rapid removal of ynenol lactone during the course of inactivation yields a mixture of acyl and inactivated enzyme species, which then shows a partial recovery of activity that is time- and pH-dependent. Inactivation is not reversible with hydroxylamine. The enzyme is not inactivated if the untethered allenone is added exogenously. All of these results are consistent with a mechanism involving enzyme acylation at serine-195 by the ynenol lactone, isomerization of the acyl enzyme to give a tethered allenone, and capture of a nucleophile (probably histidine-57) to inactivate the enzyme. Substitution at the acetylene terminus of ynenol lactones severely reduces their ability to inactivate HLE, because allenone formation is slowed and/or nucleophile capture is hindered. Chemical competence of each of these steps has been demonstrated [Spencer, R.W., Tam, T.F., Thomas, E.M., Robinson, V.J.,& Krantz, A. (1986) J. Am. Chem. Soc. 108, 5589-5597].  相似文献   

16.
M Philipp  I H Tsai  M L Bender 《Biochemistry》1979,18(17):3769-3773
The p-nitrophenyl esters of straight-chain fatty acids were used as substrates of the enzyme subtilisin Novo (EC 3.4.4.16) and its chemically produced artificial enzyme thiolsubtilisin. Subtilisin and thiolsubtilisin pH--activity profiles were determined, and kinetic effects of the active site O-S substitution were observed. Among the substrates tested, both enzymes show highest specificity with p-nitrophenyl butyrate. It was also found that subtilisin is more sensitive to changes in substrate chain length than is thiolsubtilisin. Second-order acylation rate constants (k2/Ks) are remarkably similar for both enzymes. However, thiolsubtilisin deacylation rate constants and Km values are lower than analogous subtilisin constants. While thiolsubtilisin deacylation rate constants give a pH profile identical with that of subtilisin, the pH profile of thiolsubtilisin acylation rate constants shows an active site pK value lowered from the subtilisin pK of 7.15 and exhibits an inflection point at pH 8.45, which is absent in subtilisin.  相似文献   

17.
In the context of specifying the origin of enzyme enantioselectivity, the present study explores the lipase enantioselectivity towards secondary alcohols of similar structure from the perspective of substrate binding. By carrying out molecular mechanics minimization as well as molecular dynamics simulation on tetrahedral reaction intermediates which are used as a model of transition state, we identify an unconventional productive binding mode (PBM)—M/H permutation type for Candida antarctica lipase B (CALB). The in silico results also indicate that different PBMs of the slow-reacting enantiomer do exist in one lipase even when there is little structural differences between substrates, e.g. compounds with Ph or CH2CH2Ph group display the M/H permutation type PBM while molecules with CH2Ph show the M/L permutation type PBM. By relating the PBMs of substrates to the experimentally determined E-values obtained by Hoff et al. [16], we find that disparity in PBM of the slow-reacting enantiomer determines why E-values of substrates with CH2Ph were lower than E-values of substrates with Ph or CH2CH2Ph group. The modeling results also suggest that the “pushed aside” effect of the F atom and Br atom accommodates the medium size substituent of the substrate better in the stereospecificity pocket of the enzyme.  相似文献   

18.
Okuda J  Verch S  Stürmer R  Spaniol TP 《Chirality》2000,12(5-6):472-475
Optically active titanium complexes Tieta5:eta1-C5R4SiMe2NC6H10 (OCH2Ph)-2Cl2 (R = H, Me), containing a cyclopentadienyl ligand linked to the chiral trans-2-benzyloxycyclohexylamido group, were synthesized and characterized in both enantiomerically pure forms. A single crystal X-ray structure analysis of (-)-(R, R)-Tieta5:eta1-C5H4SiMe2NC6H10(OCH2Ph)-2Cl2 shows a structure in which the benzyloxy group in the amido sidechain is not interacting with the titanium center. Upon activation with n-butyllithium, these complexes hydrogenate acetophenone N-benzylimine with low enantioselectivity.  相似文献   

19.
Pseudomonas sp. lipase-catalyzed enantioselective acylation procedure using acid anhydrides as acyl donors was exploited for the resolution of 2-aryloxy-1-propanols carrying different substituents on the benzene ring. These primary alcohols, which belong to primary alcohols with an oxygen atom at the stereocenter, were resolved generally with moderate to good enantioselectivity (E of up to 55) through the acylation with hexanoic anhydride in diisopropyl ether at 25 °C in a short reaction time. With the alcohol substrate, which gave a low enantioselectivity in the acylation at ordinary temperature, the selectivity proved to be enhanced by conducting the reaction at low temperature (−10 °C). By this acylation procedure employing the acid anhydride, enantiomerically pure (R)-2-phenoxy-1-propanol was prepared in a gram-scale reaction.  相似文献   

20.
Recently we synthesized a naphthalene analog of medetomidine, 4-[1-(1-naphthyl)ethyl]-1H-imidazole hydrochloride (1), and found it to be highly potent in adrenergic systems. The separation of optical isomers of this naphthalene analog was achieved by using the isomers of tartaric acid. The optical purities of the isomers were determined by HPLC using a chiral column. Using X-ray analysis the (+)-isomer was determined to have the S absolute configuration. It has been reported that the (+)-isomer of medetomidine (2) is the most potent enantiomer on alpha 2-adrenergic receptors. There were both qualitative and quantitative differences in biological activities of the optical isomers of 1 in alpha 1- and alpha 2-adrenergic receptor systems of guinea pig ileum and human platelets. (+)-(S)-1, but not (-)-(R)-1 was a selective agonist of alpha 2-mediated responses in ileum whereas (-)-(R)-1 was more potent than (+)-(S)-1 as an inhibitor of alpha 2-mediated platelet aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号