首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In rye leaves ( Secale cereale L. cv. Petkus "Kustro") bleached in the presence of the chlorosis-inducing herbicides aminotriazole, haloxidine, San 6706 or difunone in white light of 54.2 W m-2 (5000 lx), catalase activity was very low. In addition, the activities of glycolate oxidase and hydroxypyruvate reductase were strongly diminished in treatments with San 6706 and difunone. The lowering of the peroxisomal enzyme activities was observed in red, but not in blue light and did not occur after treatment with the non-bleaching pyridazinone derivative San 9785. The deficiencies of the peroxisomal enzymes did not appear to be involved in the initiation of the chlorosis. Instead they are probably produced as secondary consequences of the bleaching. Low peroxisomal enzyme activities were also obtained without herbicide treatment by growing the leaves in an atmosphere of 2% O2 and 3% CO2, but in this case were not accompanied by an increased sensitivity of the Chl to photooxidative bleaching. The peroxisomal enzymes reached as high activities as in untreated controls when the herbicide-treated leaves were grown at a low light intensity of 0.106 W m-2 (10 lx). After transfer of herbicide-treated leaves grown under 0.106 W m-2 to 306 W m-2 (30 000 lx), catalase was strongly inactivated, even at 0°C. In treatments with San 6706 and difunone the increase of the activities of glycolate oxidase and hydroxypyruvate reductase was either stopped, remaining unchanged, or the enzymes were slightly inactivated after exposure to 306 W m-2 (30 000 lx). The observations suggest that the inactivation of peroxisomal enzymes results from photooxidative events in the chloroplasts.  相似文献   

2.
Leaves of rye seedlings (Secale cereale L.) grown in the presence of four chlorosis-inducing herbicides under a low light intensity of 10 lux formed chlorophyll. When segments of such dim-light-grown leaves were exposed to 30,000 lux at either 0°C or 30°C, treatments with aminotriazole or haloxidine (group 1) showed no or only minor changes of their chlorophyll contents. In treatments with San 6706 or difunon (group 2), however, rapid photodestruction of chlorophyll occurred both at 0°C and at 30°C and was accompanied by an increase of malondialdehyde that was not seen in the presence of group 1 herbicides. Unlike the in vivo behavior, virtually equal rates of chlorophyll breakdown were observed for aminotriazole and San 6706 treatments in suspensions of isolated chloroplasts from 10 lux-grown leaves after exposure to strong light. The free radical scavengers p-benzoquinone and hydroquinone and the d-penicillamine copper complex exerting superoxide dismutating activity effectively prevented photooxidation of chlorophyll in 10 lux-grown herbicide-treated leaf segments or even restored an accumulation of chlorophyll at 30,000 lux. Ascorbate and several singlet oxygen or hydroxyl radical scavengers had no protective effects. Deuterium oxide and H2O2 did not enhance the degradation of chlorophyll. Superoxide dismutase activity was decreased in leaves bleached in the presence of group 2 herbicides.  相似文献   

3.
The activities of three enzymes of phenolic biosynthesis and six of general metabolism were studied at 24-hour intervals between the 3rd and 8th day after planting in barley shoots treated with the chlorosis-inducing herbicide Sandoz 6706 and grown in the dark or under high or low intensity light. The herbicide had no effect on fresh weight or soluble protein (per shoot) in plants grown in the dark or under low intensity light, but slightly decreased these parameters in plants grown for more than 5 days under high intensity light. In dark-grown seedlings the herbicide had no detectable effects on plastid ultrastructure or on the activity of malate dehydrogenase, cytochrome c oxidase, NADP-cytochrome c reductase, triose phosphate isomerase, peroxidase, catalase, shikimate dehydrogenase, phenylalanine ammonia-lyase, or chalcone-flavanone isomerase. Under low intensity light, Sandoz 6706-treated plants developed plastids with single thylakoids extending across the organelle, and the activity of all enzymes examined was increased to varying degrees. When the herbicide-treated plants were grown under high intensity light, plastid lamellar organization was severely disrupted. Activities of shikimate dehydrogenase and chalcone-flavanone isomerase were markedly enhanced, phenylalanine ammonia-lyase activity slightly promoted, and catalase activity severely inhibited. The other enzymes were not appreciably affected by Sandoz 6706 under high intensity light. It is concluded that the changes in plastid ultrastructure and enzyme activities of the herbicide-treated plants are largely secondary photomorphogenetic or photooxidative responses in the carotenoid-free plants in which chlorophylls accumulate in reduced amounts (low intensity light) or are completely absent (high intensity light).  相似文献   

4.
Glycolate oxidase (E.C. 1.1.3.1) was purified from spinach leaves (Spinacia oleracea). The molecular weight of the native protein was determined by sucrose density gradient centrifugation to be 290,000 daltons (13S), whereas that of the monomeric form was 37,000 daltons. The quaternary structure of the holoenzyme is likely to be octameric, analogous to pumpkin cotyledon glycolate oxidase [Nishimura et al, 1982]. The subcellular localization of the enzyme was studied using linear sucrose density gradient centrifugation, and it was found that glycolate oxidase activity is detectable in both leaf peroxisomal and supernatant fractions, but not in chloroplasts and mitochondria; the activity distribution pattern is essentially similar to that for catalase, a known leaf peroxisomal enzyme. Ouchterlony double diffusion and immunotitration analyses, demontrated that the rabbit antiserum against purified spinach leaf glycolate oxidase cross-reacted, identically, with the enzyme molecules present in two different subcellular fractions, i.e, the leaf peroxisome and supernatant fractions. It is thus concluded that the enzyme present in the supernatant is due to the disruption of leaf peroxisomes during the isolation, and hence glycolate oxidase is exclusively localized in leaf peroxisomes in spinach leaves.  相似文献   

5.
Glycolate oxidase (E.C. 1.1.3.1) was purified from spinach leaves (Spinacia oleracea). The molecular weight of the native protein was determined by sucrose density gradient centrifugation to be 290,000 daltons (13S), whereas that of the monomeric form was 37,000 daltons. The quaternary structure of the holoenzyme is likely to be octameric, analogous to pumpkin cotyledon glycolate oxidase [Nishimura et al, 1982]. The subcellular localization of the enzyme was studied using linear sucrose density gradient centrifugation, and it was found that glycolate oxidase activity is detectable in both leaf peroxisomal and supernatant fractions, but not in chloroplasts and mitochondria; the activity distribution pattern is essentially similar to that for catalase, a known leaf peroxisomal enzyme. Ouchterlony double diffusion and immunotitration analyses, demonstrated that the rabbit antiserum against purified spinach leaf glycolate oxidase cross-reacted, identically, with the enzyme molecules present in two different subcellular fractions, i.e, the leaf peroxisome and supernatant fractions. It is thus concluded that the enzyme present in the supernatant is due to the disruption of leaf peroxisomes during the isolation, and hence glycolate oxidase is exclusively localized in leaf peroxisomes in spinach leaves.  相似文献   

6.
The cytochemical localizations of malate synthase (glyoxysomal marker) and glycolate oxidase (peroxisomal marker) have been examined in cotyledon segments and sucrose-gradient fractions from germinated cucumber (Cucumis sativus L.) seedlings. The seedlings were grown in the dark for 4 days, transferred to 4 hours of continuous light, then returned to the dark for 24 hours. Under these conditions, high specific activities for both glyoxysomal and peroxisomal enzymes are maintained in cotyledon homogenates and microbody-enriched fractions. Electron cytochemistry of the marker enzymes reveals that all or virtually all the microbodies observed in cotyledonary cells and sucrose-gradient fractions contain both enzymes. The staining in gradient fractions was determined from scoring a minimum of 600 photographed microbodies for each enzyme. After correcting for the number of particles stained for catalase reactivity (representing true microbodies), 94 and 97% of the microbodies were found stained for malate synthase and glycolate oxidase activity, respectively.  相似文献   

7.
Homogenates of various lower land plants, aquatic angiosperms, and green algae were assayed for glycolate oxidase, a peroxisomal enzyme present in green leaves of higher plants, and for glycolate dehydrogenase, a functionally analogous enzyme characteristic of certain green algae. Green tissues of all lower land plants examined (including mosses, liverworts, ferns, and fern allies), as well as three freshwater aquatic angiosperms, contained an enzyme resembling glycolate oxidase, in that it oxidized l- but not d-lactate in addition to glycolate, and was insensitive to 2 mm cyanide. Many of the green algae (including Chlorella vulgaris, previously claimed to have glycolate oxidase) contained an enzyme resembling glycolate dehydrogenase, in that it oxidized d- but not l-lactate, and was inhibited by 2 mm cyanide. Other green algae had activity characteristic of glycolate oxidase and, accordingly, showed a substantial glycolate-dependent O2 uptake. It is pointed out that this distribution pattern of glycolate oxidase and glycolate dehydrogenase among the green plants may have phylogenetic significance.  相似文献   

8.
The effect of the substituted pyridazinone herbicides, Sandoz9785 and Sandoz 6706, on lipid metabolism was studied in greeningbarley leaves. The herbicides had no effect on chlorophyll formationbut caused an altered chloroplast morphology during greening.In leaves supplied with {14C} acetate, Sandoz 9785 decreasedincorporation of radioactivity into linolenate while Sandoz6706 decreased incorporation into both linolenate and trans-3-hexadecenoate.Decreased linolenate labelling was accompanied by an accumulationof {14C}linolenate in diacylgalactosylglycerol. {14C}Palmitateaccumulated in phosphatidylglycerol when synthesis of trans-3-hexadecenoatewas inhibited. The results are discussed in relation to thefunction of acyl lipids in fatty acid desaturation and the roleof lipids in chloroplast morphology. Key words: Chloroplast structure, Lipid synthesis, Substituted pyridazinones, Fatty acid desaturation  相似文献   

9.
Sandoz 6706 pretreatment of white light grown barley seedlings causes a 60% increase in saponarin (6-C-glucosyl-7-O-glucosylapigenin) but a 300% increase in lutonarin (3′-hydroxysaponarin). Norflurazon has little effect on saponarin levels but is almost as effective as Sandoz 6706 in enhancing lutonarin net synthesis. Barley roots contain saponarin and lutonarin only after herbicide treatment. Mung bean seedlings respond to Sandoz 6706 by accumulating higher levels of rutin and delphinidin 3-glucoside. The results are discussed in relation to the site of action of the herbicides, the High Energy photoresponse, and control of flavonoid 3′-hydroxylation.  相似文献   

10.
The intracellular distribution of enzymes capable of catalyzing the reactions from phosphoglycolate to glycerate in the bluegreen colored eucaryotic alga Cyanidium caldarium has been studied. After separating the organelles from a crude homogenate on a linear flotation gradient, the enzymes glycolate oxidase and glutamate-glyoxylate aminotransferase along with catalase were present in the peroxisomal fraction (density: 1.23 grams per cubic centimeter). Serine hydroxymethyltransferase was found in the mitochondrial fraction (density: 1.18 grams per cubic centimeter). In contrast to the observations in green leaves of higher plants, the enzymes for the conversion of serine to glycerate (serine-glyoxylate aminotransferase and hydroxypyruvate reductase) were found only in the soluble fraction of the gradient. The partial characterization of enzymes from Cyanidium participating in glycolate metabolism revealed only slight differences from the corresponding enzymes from higher plants. The phylogenetic implications of the observed similarities between the enigmatic alga Cyanidium and higher plants are discussed.  相似文献   

11.
Benzyladenine (BA) increases the rate of expansion of dark-grown sunflower (Helianthus annuus L.) cotyledons. The hormone slightly enhances the development of the two glyoxysomal enzymes, isocitrate lyase and malate synthetase, during the first 3 days of germination and greatly accelerates their decay in the 2 following days. The levels of the peroxisomal enzymes, glycolate oxidase and glyoxylate reductase, are enhanced by BA more than those of the two glyoxysomal enzymes. These effects of BA on microbody enzymes are very similar to those of white light. Mitochondrial enzyme activities are increased to a varying extent by BA: the increase is minimal for fumarase, and maximal for cytochrome oxidase. The level of cytochrome oxidase is enhanced 346% at the 5th day of germination. Also, the rate of O2 consumption is increased by BA, but the time course of this increased O2 consumption does not match with that of cytochrome oxidase. Fusicoccin, a fungal toxin, mimics the effect of BA on cotyledon expansion, but fails to duplicate its action on microbody enzymes. This suggests that the effect of BA on microbody enzymes is not closely linked with the mechanism of growth promotion.  相似文献   

12.
A. P. Kausch  H. T. Horner 《Planta》1985,164(1):35-43
Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.Abbreviations AMPD 2-amino-2-methyl-1,3-propandiol - CTEM conventional transmission electron microscopy - DAB 3,3-diaminobenzidine tetrahydrochloride - HVEM high-voltage electron microscopy  相似文献   

13.
Catalase, glycolate oxidase, and hydroxypyruvate reductase, enzymes which are located in the microbodies of leaves, show different developmental patterns in the shoots of wheat seedlings. Catalase and hydroxypyruvate reductase are already present in the shoots of ungerminated seeds. Glycolate oxidase appears later. All three enzymes develop in the dark, but glycolate oxidase and hydroxypyruvate reductase have only low activities. On exposure of the seedlings to continuous white light (14.8 × 103 ergs cm−2 sec−1), the activity of catalase is doubled, and glycolate oxidase and hydroxypyruvate reductase activities increase by 4- to 7-fold. Under a higher light intensity, the activities of all three enzymes are considerably further increased. The activities of other enzymes (cytochrome oxidase, fumarase, glucose-6-phosphate dehydrogenase) are unchanged or only slightly influenced by light. After transfer of etiolated seedlings to white light, the induced increase of total catalase activity shows a much longer lag-phase than that of glycolate oxidase and hydroxypyruvate reductase. It is concluded that the light-induced increases of the microbody enzymes are due to enzyme synthesis. The light effect on the microbody enzymes is independent of chlorophyll formation or the concomitant development of functional chloroplasts. Short repeated light exposures which do not lead to greening are very effective. High activities of glycolate oxidase and hydroxypyruvate reductase develop in the presence of 3-amino-1,2,4-triazole which blocks chloroplast development. The effect of light is not exerted through induced glycolate formation and appears instead to be photomorphogenetic in character.  相似文献   

14.
A Survey of Plants for Leaf Peroxisomes   总被引:28,自引:20,他引:8       下载免费PDF全文
Leaves of 10 plant species, 7 with photorespiration (spinach, sunflower, tobacco, pea, wheat, bean, and Swiss chard) and 3 without photorespiration (corn, sugarcane, and pigweed), were surveyed for peroxisomes. The distribution pattern for glycolate oxidase, glyoxylate reductase, catalase, and part of the malate dehydrogenase indicated that these enzymes exist together in this organelle. The peroxisomes were isolated at the interface between layers of 1.8 to 2.3 m sucrose by isopycnic nonlinear sucrose density gradient centrifugation or in 1.95 m sucrose on a linear gradient. Chloroplasts, located by chlorophyll, and mitochondria by cytochrome c oxidase, were in 1.3 to 1.8 m sucrose.In leaf homogenates from the first 7 species with photorespiration, glycolate oxidase activity ranged from 0.5 to 1.5 mumoles x min(-1) x g(-1) wet weight or a specific activity of 0.02 to 0.05 mumole x min(-1) x mg(-1) protein. Glyoxylate reductase activity was comparable with glycolate oxidase. Catalase activity in the homogenates ranged from 4000 to 12,000 mumoles x min(-1) x g(-1) wet weight or 90 to 300 mumoles x min(-1) x mg(-1) protein. Specific activities of malate dehydrogenase and cytochrome oxidase are also reported. In contrast, homogenates of corn and sugarcane leaves, without photorespiration, had 2 to 5% as much glycolate oxidase, glyoxylate reductase, and catalase activity. These amounts of activity, though lower than in plants with photorespiration, are, nevertheless, substantial.Peroxisomes were detected in leaf homogenates of all plants tested; however, significant yields were obtained only from the first 5 species mentioned above. From spinach and sunflower leaves, a maximum of about 50% of the marker enzyme activities was found to be in these microbodies after homogenization. The specific activity for peroxisomal glycolate oxidase and glyoxylate reductase was about 1 mumole x min(-1) x mg(-1) protein; for catalase. 8000 mumoles x min(-1) x mg(-1) protein, and for malate dehydrogenase, 40 mumoles x min(-1) x mg(-1) protein. Only small to trace amounts of marker enzymes for leaf peroxisomes were recovered on the sucrose gradients from the last 5 species of plants. Bean leaves, with photorespiration, had large amounts of these enzymes (0.57 mumole of glycolate oxidase x min(-1) x g(-1) tissue) in the soluble fraction, but only traces of activity in the peroxisomal fraction. Low peroxisome recovery from certain plants was attributed to particle fragility or loss of protein as well as to small numbers of particles in such plants as corn and sugarcane.Homogenates of pigweed leaves (no photorespiration) contained from one-third to one-half the activity of the glycolate pathway enzymes as found in comparable preparations from spinach leaves which exhibit photorespiration. However, only traces of peroxisomal enzymes were separated by sucrose gradient centrifugation of particles from pigweed. Data from pigweed on the absence of photorespiration yet abundance of enzymes associated with glycolate metabolism is inconsistent with current hypotheses about the mechanism of photorespiration.Most of the catalase and part of the malate dehydrogenase activity was located in the peroxisomes. Contrary to previous reports, the chloroplast fractions from plants with photo-respiration did not contain a concentration of these 2 enzymes, after removal of peroxisomes by isopycnic sucrose gradient centrifugation.  相似文献   

15.
The functional transition of glyoxysomes to leaf peroxisomes occurs during greening of germinating pumpkin cotyledons (Cucurbita sp. Amakuri Nankin). The immunocytochemical protein A-gold method was employed in the analysis of the transition using glyoxysomal specific citrate synthase immunoglobulin G and leaf peroxisomal specific glycolate oxidase immunoglobulin G. The labeling density of citrate synthase was decreased in the microbodies during the greening, whereas that of glycolate oxidase was dramatically increased. Double labeling experiments using different sizes of protein A-gold particles show that both the glyoxysomal and the leaf peroxisomal enzymes coexist in the microbody of the transitional stage indicating that glyoxysomes are directly transformed to leaf peroxisomes during greening.  相似文献   

16.
The activities of enzymes involved in C4 photosynthesis andphotorespiration in colorless parts of variegated leaves ofStenotaphrum secundatum (Walt.) Kuntze were compared with thosein green leaves. Chlorophyll content of the colorless part wasonly about 0.3–3% of that of the green leaves. The activities of chloroplastic enzymes, pyruvate, Pi dikinase,NADP+-malic enzyme and NADP+-glyceraldehyde 3-phosphate dehydrogenasewere considerably lower in colorless tissue on a fresh weightor protein basis (the ratios of the activities in the green/colorlesstissues ranging from 5 to 20). A cytoplasmic enzyme, UDP-glucosepyrophosphorylase as well as aspartate and alanine aminotransferasesshowed comparable activities in the two types of tissue, whereasPEP carboxylase in the colorless tissue had only the one-thirdactivity of that in green tissue. Differences in activitieswere also observed for the glycolate pathway enzymes (the ratiosranging from 2 to 7 for glycolate oxidase, hydroxypyruvate reductaseand serine hydroxymethyltransferase, and 7 to 15 for catalase),while cytochrome c oxidase showed comparable activity in thetwo types of tissue. The results suggest that the deficiency of thylakoid developmentin the colorless tissue influences enzyme activities not onlyin plastids but also in other cellular compartments. 1Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo 113, Japan. (Received March 26, 1986; Accepted June 17, 1986)  相似文献   

17.
Glycolate oxidase (GO) has been identified in the endocyanom Cyanophora paradoxa which has peroxisome-like organelles and cyanelles instead of chloroplasts. The enzyme used or formed equimolar amounts of O2 or H2O2 and glyoxylate, respectively. Aerobically, the enzyme did not reduce the artificial electron acceptor dichlorophenol indophenol. However, after an inhibitor of glycolate dehydrogenase, KCN (2 millimolar), was added to the assay medium, considerable aerobic glycolate:dichlorophenol indophenol reductase activity was detectable. The leaf GO inhibitor 2-hydroxybutynoate (30 micromolar), which binds irreversibly to the flavin moiety of the active site of leaf GO, inhibited Cyanophora GO and pea (Pisum sativum L.) GO to the same extent. This suggests that the active sites of both enzymes are similar. Cyanophora GO and pea GO cannot oxidize d-lactate. In contrast to GO from pea or other organisms, the affinity of Cyanophora GO for l-lactate is very low (Km 25 millimolar). Another important difference is that Cyanophora GO produced sigmoidal kinetics with O2 as varied substrate, whereas pea GO produced normal Michaelis-Menten kinetics. It is concluded that there is considerable inhomogeneity among the glycolate-oxidizing enzymes from Cyanophora, pea, and other organisms. The specific catalase activity in Cyanophora was only one-tenth of that in leaves. NADH-and NADPH-dependent hydroxypyruvate reductase (HPR) and glyoxylate reductase activities were detected in Cyanophora. NADH-HPR was markedly inhibited by hydroxypyruvate above 0.5 millimolar. Variable substrate inhibition was observed with glyoxylate in homogenates from different algal cultures. It is proposed that Cyanophora has multiple forms of HPR and glyoxylate reductase, but no enzyme clearly resembling leaf peroxisomal HPR was identified in these homogenates. Moreover, no serine:glyoxylate aminotransferase activity was detected. These results collectively indicate the possibility that the glycolate metabolism in Cyanophora deviates from that in leaves.  相似文献   

18.
14CO2 assimilation, RuBP earboxylase and PEP carboxylase activities show cyclic changes during the development of barley leaves. Cyclic changes, but in phase opposition with respect to carboxylating enzymes, are shown by RuBP oxygenase, phosphoglycolate phosphatase, glycolate oxidase and nitrate reductase activities. The oxygenase function of RuBP carboxylase appears to be the primary source of glycolate in young leaves, whereas in old ones glycolate could be supplied from some source in addition to RuBP oxygenase activity.  相似文献   

19.
In contrast to the inhibitory action of sulfite on glycolate oxidase, the specific activity of the enzyme in tobacco leaves exposed to SO2 for 18 hr increases in proportion to the SO2 concentration. This increase is strongly reduced by pretreatment with cycloheximide. As a consequence of induced de novo synthesis of glycolate oxidase the glycolate content of the leaves is markedly reduced after 18 hr exposure to SO2.  相似文献   

20.
In concurrence with earlier results, the following enzymes showed latency in intact spinach (Spinacia oleracea L.) leaf peroxisomes: malate dehydrogenase (89%), hydroxypyruvate reductase (85%), serine glyoxylate aminotransferase (75%), glutamate glyoxylate aminotransferase (41%), and catalase (70%). In contrast, glycolate oxidase was not latent. Aging of peroxisomes for several hours resulted in a reduction in latency accompanied by a partial solubilization of the above mentioned enzymes. The extent of enzyme solubilization was different, being highest with glutamate glyoxylate aminotransferase and lowest with malate dehydrogenase. Osmotic shock resulted in only a partial reduction of enzyme latency. Electron microscopy revealed that the osmotically shocked peroxisomes remained compact, with smaller particle size and pleomorphic morphology but without a continuous boundary membrane. Neither in intact nor in osmotically shocked peroxisomes was a lag phase observed in the formation of glycerate upon the addition of glycolate, serine, malate, and NAD. Apparently, the intermediates, glyoxylate, hydroxypyruvate, and NADH, were confined within the peroxisomal matrix in such a way that they did not readily leak out into the surrounding medium. We conclude that the observed compartmentation of peroxisomal metabolism is not due to the peroxisomal boundary membrane as a permeability barrier, but is a function of the structural arrangement of enzymes in the peroxisomal matrix allowing metabolite channeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号