首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate a surface electromyography (sEMG) signal and force model for the biceps brachii muscle during isotonic isometric contractions for an experimental set-up as well as for a simulation. The proposed model includes a new rate coding scheme and a new analytical formulation of the muscle force generation. The proposed rate coding scheme supposes varying minimum and peak firing frequencies according to motor unit (MU) type (I or II). Practically, the proposed analytical mechanogram allows us to tune the force contribution of each active MU according to its type and instantaneous firing rate. A subsequent sensitivity analysis using a Monte Carlo simulation allows deducing optimised input parameter ranges that guarantee a realistic behaviour of the proposed model according to two existing criteria and an additional one. In fact, this proposed new criterion evaluates the force generation efficiency according to neural intent. Experiments and simulations, at varying force levels and using the optimised parameter ranges, were performed to evaluate the proposed model. As a result, our study showed that the proposed sEMG–force modelling can emulate the biceps brachii behaviour during isotonic isometric contractions.  相似文献   

2.
Adenosine triphosphate (ATP) turnover drives various processive molecular motors and adenosine diphosphate (ADP) release is a principal transition in this cycle. Biochemical and single molecule mechanical studies have led to a model in which a slow ADP release step contributes to the processivity of myosin-V. To test the relationship between force generation and ADP release, we utilized optical trapping nanometry and single molecule total internal reflection fluorescence imaging for simultaneous and direct observation of both processes in myosin-V. We found that ADP was released 69 ± 5.3 ms after force generation and displacement of actin, providing direct evidence for slow ADP release. As proposed by several previous studies, this slow ADP release probably ensures processivity by prolonging the strong actomyosin state in the ATP turnover cycle.  相似文献   

3.
Muscle force can be generated actively through changes in neural excitation, and passively through externally imposed changes in muscle length. Disease and injury can disrupt force generation, but it can be challenging to separate passive from active contributions to these changes. Ultrasound elastography is a promising tool for characterizing the mechanical properties of muscles and the forces that they generate. Most prior work using ultrasound elastography in muscle has focused on the group velocity of shear waves, which increases with increasing muscle force. Few studies have quantified the phase velocity, which depends on the viscoelastic properties of muscle. Since passive and active forces within muscle involve different structures for force transmission, we hypothesized that measures of phase velocity could detect changes in shear wave propagation during active and passive conditions that cannot be detected when considering only group velocity. We measured phase and group velocity in the human biceps brachii during active and passive force generation and quantified the differences in estimates of shear elasticity obtained from each of these measurements. We found that measures of group velocity consistently overestimate the shear elasticity of muscle. We used a Voigt model to characterize the phase velocity and found that the estimated time constant for the Voigt model provided a way to distinguish between passive and active force generation. Our results demonstrate that shear wave elastography can be used to distinguish between passive and active force generation when it is used to characterize the phase velocity of shear waves propagating in muscle.  相似文献   

4.
We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be capable of predicting the electromotility voltage displacement function. We calculate the electrical and mechanical contributions to the force balance and show that the model is consistent with experimentally measured values for electromechanical properties. The model rationalizes several experimental observations associated with outer hair cell electromotility and provides for constant surface area of the plasma membrane. The model accounts for the isometric force generated by the cell and explains the observation that the disruption of spectrin by diamide reduces force generation in the cell. We discuss the relation of this mechanism to other proposed models of outer hair cell electromotility. Our analysis suggests that rotation of membrane dipoles and the accompanying mechanical deformation may be the molecular mechanism of electromotility.  相似文献   

5.
Durotaxis refers to the phenomenon in which cells can sense the spatial gradient of the substrate rigidity in the process of cell migration. A conceptual two-part theory consisting of the focal adhesion force generation and mechanotransduction has been proposed previously by Lo et al. to explain the mechanism underlying durotaxis. In the present work, we are concerned with the first part of the theory: how exactly is the larger focal adhesion force generated in the part of the cell adhering to the stiffer region of the substrate? Using a simple elasticity model and by assuming the cell adheres to the substrate continuously underneath the whole cell body, we show that the mechanics principle of static equilibrium alone is sufficient to account for the generation of the larger traction stress on the stiffer region of the substrate. We believe that our model presents a simple mechanistic understanding of mechanosensing of substrate stiffness gradient at the cellular scale, which can be incorporated in more sophisticated mechanobiochemical models to address complex problems in mechanobiology and bioengineering.  相似文献   

6.
We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.  相似文献   

7.
Force generation in kinesin hinges on cover-neck bundle formation   总被引:1,自引:0,他引:1  
In kinesin motors, a fundamental question concerns the mechanism by which ATP binding generates the force required for walking. Analysis of available structures combined with molecular dynamics simulations demonstrates that the conformational change of the neck linker involves the nine-residue-long N-terminal region, the cover strand, as an element that is essential for force generation. Upon ATP binding, it forms a beta sheet with the neck linker, the cover-neck bundle, which induces the forward motion of the neck linker, followed by a latch-type binding to the motor head. The estimated stall force and anisotropic response to external loads calculated from the model agree with force-clamp measurements. The proposed mechanism for force generation by the cover-neck bundle formation appears to apply to several kinesin families. It also elucidates the design principle of kinesin as the smallest known processive motor.  相似文献   

8.
Important mechanical events during mitosis are facilitated by the generation of force by chromosomal kinetochore sites that attach to dynamic microtubule tips. Several theoretical models have been proposed for how these sites generate force, and molecular diffusion of kinetochore components has been proposed as a key component that facilitates kinetochore function. However, these models do not explicitly take into account the recently observed flexibility of kinetochore components and variations in microtubule shape under load. In this paper, we develop a mathematical model for kinetochore-microtubule connections that directly incorporates these two important components, namely, flexible kinetochore binder elements, and the effects of tension load on the shape of shortening microtubule tips. We compare our results with existing biased diffusion models and explore the role of protein flexibility inforce generation at the kinetochore-microtubule junctions. Our model results suggest that kinetochore component flexibility and microtubule shape variation under load significantly diminish the need for high diffusivity (or weak specific binding) of kinetochore components; optimal kinetochore binder stiffness regimes are predicted by our model. Based on our model results, we suggest that the underlying principles of biased diffusion paradigm need to be reinterpreted.  相似文献   

9.
Important mechanical events during mitosis are facilitated by the generation of force by chromosomal kinetochore sites that attach to dynamic microtubule tips. Several theoretical models have been proposed for how these sites generate force, and molecular diffusion of kinetochore components has been proposed as a key component that facilitates kinetochore function. However, these models do not explicitly take into account the recently observed flexibility of kinetochore components and variations in microtubule shape under load. In this paper, we develop a mathematical model for kinetochore-microtubule connections that directly incorporates these two important components, namely, flexible kinetochore binder elements, and the effects of tension load on the shape of shortening microtubule tips. We compare our results with existing biased diffusion models and explore the role of protein flexibility inforce generation at the kinetochore-microtubule junctions. Our model results suggest that kinetochore component flexibility and microtubule shape variation under load significantly diminish the need for high diffusivity (or weak specific binding) of kinetochore components; optimal kinetochore binder stiffness regimes are predicted by our model. Based on our model results, we suggest that the underlying principles of biased diffusion paradigm need to be reinterpreted.  相似文献   

10.
Use of an electrical model of the left ventricle of the heart and the arterial system permits analysis of the changes which take place as the capacity of the myocardium for generation of force decreases. The model is simple in structure, and its construction and practical testing would not be difficult. It demonstrates that, as the heart muscle weakens, the peak of intracardiac force occurs later in systole, and the difference between the intracardiac pressure and the aortic pressure in the second half of systole is much greater than for the normal heart. The feedback mechanisms which are proposed to affect myocardial contractility would affect this compensation for cardiac weakening. Indices to categorize the behavior of the normal, compensated though weakened, and decompensated myocardium are proposed.  相似文献   

11.
A model of activation of muscle contraction has been proposed. It is based on calcium diffusion and binding to specific regulatory sites in a sarcomere. Calcium ions activate interactions of contractile proteins and thus the generation of force. The model quantifies the relation between calcium released from intracellular stores and the elicited force.  相似文献   

12.
Lan G  Sun SX 《Biophysical journal》2005,88(6):4107-4117
Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account. Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step. Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased, thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick filament are passive force generators in assisting muscle contraction.  相似文献   

13.
We have previously proposed and validated a mathematical model of myocardium contraction-relaxation cycle based on current knowledge of regulatory role of Ca2+ and cross-bridge kinetics in cardiac cell. That model did not include viscous elements. Here we propose a modification of the model, in which two viscous elements are added, one in parallel to the contractile element, and one more in parallel to the series elastic element. The modified model allowed us to simulate and explain some subtle experimental data on relaxation velocity in isotonic twitches and on a mismatch between the time course of sarcomere shortening/lengthening and the time course of active force generation in isometric twitches. Model results were compared with experimental data obtained from 28 rat LV papillary muscles contracting and relaxing against various loads. Additional model analysis suggested contribution of viscosity to main inotropic and lusitropic characteristics of myocardium performance.  相似文献   

14.
Twining plants use their helical stems to clasp supports and to generate a squeezing force, providing stability against gravity. To elucidate the mechanism that allows force generation, we measured the squeezing forces exerted by the twiner Dioscorea bulbifera while following its growth using time-lapse photography. We show that the development of the squeezing force is accompanied by stiffening of the stem and the expansion of stipules at the leaf base. We use a simple thin rod model to show that despite their small size and sparse distribution, stipules impose a stem deformation sufficient to account for the measured squeezing force. We further demonstrate that tensioning of the stem helix, although counter-intuitive, is the most effective mechanism for generating large squeezing forces in twining plants. Our observations and model point to a general mechanism for the generation of the twining force: a modest radial stem expansion during primary growth, or the growth of lateral structures such as leaf bases, causes a delayed stem tensioning that creates the squeezing forces necessary for twining plants to ascend their supports. Our study thus provides the long-sought answer to the question of how twining plants ascend smooth supports without the use of adhesive or hook-like structures.  相似文献   

15.
Roy S  Brownell WE  Spector AA 《PloS one》2012,7(5):e37667
The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric) force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.  相似文献   

16.
The sliding filament and crossbridge theories do not suffice to explain a number of muscle experiments. For example, from the entire muscle to myofibrils, predictions of these theories were shown to underestimate the force output during and after active tissue stretch. The converse applies to active tissue shortening.In addition to the crossbridge cycle, we propose that another molecular mechanism is effective in sarcomere force generation. We suggest that, when due to activation, myosin binding sites are available on actin, the giant protein titin's PEVK region attaches itself to the actin filament at those sites. As a result, the molecular spring length is dramatically reduced. This leads to increased passive force when the sarcomere is stretched and to decreased or even negative passive force when the sarcomere shortens. Moreover, during shortening, the proposed mechanism interferes with active-force production by inhibiting crossbridges.Incorporation of a simple ‘sticky-spring’ mechanism model into a Hill-type model of sarcomere dynamics offers explanations for several force-enhancement and force-depression effects. For example, the increase of the sarcomere force compared to the force predicted solely by the sliding filament and crossbridge theories depends on the stretch amplitude and on the working range. The same applies to the decrease of sarcomere force during and after shortening. Using only literature data for its parameterization, the model predicts forces similar to experimental results.  相似文献   

17.
Meaud J  Grosh K 《Biophysical journal》2011,(11):2576-2585
One of the central questions in the biophysics of the mammalian cochlea is determining the contributions of the two active processes, prestin-based somatic motility and hair bundle (HB) motility, to cochlear amplification. HB force generation is linked to fast adaptation of the transduction current via a calcium-dependent process and somatic force generation is driven by the depolarization caused by the transduction current. In this article, we construct a global mechanical-electrical-acoustical mathematical model of the cochlea based on a three-dimensional fluid representation. The global cochlear model is coupled to linearizations of nonlinear somatic motility and HB activity as well as to the micromechanics of the passive structural and electrical elements of the cochlea. We find that the active HB force alone is not sufficient to power high frequency cochlear amplification. However, somatic motility can overcome resistor-capacitor filtering by the basolateral membrane and deliver sufficient mechanical energy for amplification at basal locations. The results suggest a new theory for high frequency active cochlear mechanics, in which fast adaptation controls the transduction channel sensitivity and thereby the magnitude of the energy delivered by somatic motility.  相似文献   

18.
Oriented cell divisions are essential for the generation of cell diversity and for tissue shaping during morphogenesis. Cells in tissues are mechanically linked to their neighbors, upon which they impose, and from which they experience, physical force. Recent work in multiple systems has revealed that tissue-level physical forces can influence the orientation of cell division. A long-standing question is whether forces are communicated to the spindle orienting machinery via cell shape or directly via mechanosensing intracellular machinery. In this article, we review the current evidence from diverse model systems that show spindles are oriented by tissue-level physical forces and evaluate current models and molecular mechanisms proposed to explain how the spindle orientation machinery responds to extrinsic force.  相似文献   

19.
Previously we showed that stiffness of relaxed fibers and active force generated in single skinned fibers of rabbit psoas muscle are inhibited in parallel by actin-binding fragments of caldesmon, an actin-associated protein of smooth muscle, under conditions in which a large fraction of cross-bridges is weakly attached to actin (ionic strength of 50 mM and temperature of 5 degrees C). These results suggested that weak cross-bridge attachment to actin is essential for force generation. The present study provides evidence that this is also true for physiological ionic strength (170 mM) at temperatures up to 30 degrees C, suggesting that weak cross-bridge binding to actin is generally required for force generation. In addition, we show that the inhibition of active force is not a result of changes in cross-bridge cycling kinetics but apparently results from selective inhibition of weak cross-bridge binding to actin. Together with our previous biochemical, mechanical, and structural studies, these findings support the proposal that weak cross-bridge attachment to actin is an essential intermediate on the path to force generation and are consistent with the concept that isometric force mainly results from an increase in strain of the attached cross-bridge as a result of a structural change associated with the transition from a weakly bound to a strongly bound actomyosin complex. This mechanism is different from the processes responsible for quick tension recovery that were proposed by Huxley and Simmons (Proposed mechanism of force generation in striated muscle. Nature. 233:533-538.) to represent the elementary mechanism of force generation.  相似文献   

20.
High-resolution structures of the motor domain of myosin II and lower resolution actin-myosin structures have led to the "swinging lever arm" model for myosin force generation. The available kinetic data are not all easily reconciled with this model and understanding the final details of the myosin motor mechanism must await actin-myosin co-crystals. The observation that myosin can populate multiple states in the absence of actin has nonetheless led to significant insights. The currently known myosin structures correspond to defined kinetic states that bind weakly (K(d)>microM) to actin. It is possible that the myosin lever arm could complete its swing before strong binding to actin and force generation--a process that would correspond, in the absence of load, to a Brownian ratchet. We further suggest that, under load, internal springs within the myosin head could decouple force generation and lever arm movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号