首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物激素受体研究进展   总被引:2,自引:0,他引:2  
植物激素对植物的生长发育以及在植物应对逆境方面具有重要的调节作用,植物激素受体是植物激素信号转导途径中的一个关键环节,倍受关注。近年来,由于生物化学与分子生物学和遗传学结合,使得植物激素受体的研究取得了很大进展。综述了5种经典植物激素受体以及油菜素内酯和茉莉酸受体在生物化学、遗传学和分子生物学三个层面上的研究成果,旨在为进一步研究植物激素作用机制提供参考资料。  相似文献   

2.
Stressor (biotic as well as abiotic) generally hijack the plant growth and yield characters in hostile environment leading to poor germination of the plants and yield. Among the plant growth promoting rhizobacteria, Azotobacter spp. (Gram-negative prokaryote) are considered to improve the plant health. Various mechanisms are implicated behind improved plant health in Azotobacter spp. inoculated plants. For example, acceleration of phytohormone like Indole-3-Acetic Acid production, obviation of various stressors, nitrogen fixation, pesticides and oil globules degradation, heavy metals metabolization, etc. are the key characteristics of Azotobacter spp. action. In addition, application of this bacteria has also become helpful in the reclamation of soil suggesting to be a putative agent which can be used in the transformation of virgin land to fertile one. Application of pesticides of chemical origin are being put on suspension mode as the related awareness program is still on. As far as the limitations of this microbe is concerned, commercial level formulations availability is still a great menace. Present review has been aimed to appraise the researchers pertaining to utility of Azotobacter spp. in the amelioration of plant health in sustainable agroecosystem. The article has been written with the target to gather maximum information into single pot so that it could reach to the dedicated researchers.  相似文献   

3.
4.
5.
AIMS: The aims of the study were to identify the effects of rice endophyte Pantoea agglomerans YS19 on host plant growth and allocations of photosynthates. METHODS AND RESULTS: Endophytic diazotrophic YS19 showed nitrogen-fixing activity in N-free medium, and produced four categories of phytohormones which were indole-3-acetic acid, abscisic acid, gibberellic acid and cytokinin in Luria-Bertani medium. Inoculation of YS19 improved the biomass of the 12-day-cultivated host rice seedlings by 63.4% on N-free medium or by 18.7% on N-supplemented medium. Spraying of YS19 cell culture onto the rice plants at the premilk stage enhanced the transportation of the photosynthetic assimilation product from the source (flag leaves) to the sink (stachys) significantly. The formation of the plant sink was obviously inhibited when YS19 cell culture was applied at the late milk stage. CONCLUSIONS: This research suggests that endophyte YS19 promotes host rice plant growth and affects allocations of host photosynthates. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggested that YS19 possesses the potential for increasing rice production in field application. Meanwhile, a suitable plant growth stage must be selected for the foliar spraying of YS19 cell culture.  相似文献   

6.
Heterotrimeric G-proteins in plant cell signaling   总被引:3,自引:0,他引:3  
  相似文献   

7.
Both phytohormone signaling and epigenetic mechanisms have long been known to play crucial roles in plant development and plasticity in response to ambient stimuli.Indeed,diverse signaling pathways mediated by phytohormones and epigenetic processes integrate multiple upstream signals to regulate various plant traits.Emerging evidence indicates that phytohormones and epigenetic processes interact at multiple levels.In this review,we summarize the current knowledge of the interplay between phytoho...  相似文献   

8.
Blue light photoreceptors, cryptochromes (CRYs), regulate multiple aspects of plant growth and development. However, our knowledge of CRYs is predominantly based on model plant Arabidopsis at early growth stage. In this study, we elucidated functions of CRY1a gene in mature tomato (Solanum lycopersicum) plants by using cry1a mutants and CRY1a‐overexpressing lines (OE‐CRY1a‐1 and OE‐CRY1a‐2). In comparison with wild‐type plants, cry1a mutants are relatively tall, accumulate low biomass, and bear more fruits, whereas OE‐CRY1a plants are short stature, and they not only flower lately but also bear less fruits. RNA‐seq, qRT‐PCR, and LC‐MS/MS analysis revealed that biosynthesis of gibberellin, cytokinin, and jasmonic acid was down‐regulated by CRY1a. Furthermore, DNA replication was drastically inhibited in leaves of OE‐CRY1a lines, but promoted in cry1a mutants with concomitant changes in the expression of cell cycle genes. However, CRY1a positively regulated levels of soluble sugars, phytofluene, phytoene, lycopene, and ß‐carotene in the fruits. The results indicate the important role of CRY1a in plant growth and have implications for molecular interventions of CRY1a aimed at improving agronomic traits.  相似文献   

9.
The transmission of insect‐vectored diseases entails complex interactions among pathogens, hosts and vectors. Chemistry plays a key role in these interactions; yet, little work has addressed the chemical ecology of insect‐vectored diseases, especially in plant pathosystems. Recently, we documented effects of Cucumber mosaic virus (CMV) on the phenotype of its host (Cucurbita pepo) that influence plant‐aphid interactions and appear conducive to the non‐persistent transmission of this virus. CMV reduces host‐plant quality for aphids, causing rapid vector dispersal. Nevertheless, aphids are attracted to the elevated volatile emissions of CMV‐infected plants. Here, we show that CMV infection (1) disrupts levels of carbohydrates and amino acids in leaf tissue (where aphids initially probe plants and acquire virions) and in the phloem (where long‐term feeding occurs) in ways that reduce plant quality for aphids; (2) causes constitutive up‐regulation of salicylic acid; (3) alters herbivore‐induced jasmonic acid biosynthesis as well as the sensitivity of downstream defences to jasmonic acid; and (4) elevates ethylene emissions and free fatty acid precursors of volatiles. These findings are consistent with previously documented patterns of aphid performance and behaviour and provide a foundation for further exploration of the genetic mechanisms responsible for these effects and the evolutionary processes that shape them.  相似文献   

10.
An attempt has been made to uncouple the effects of the two primary components of shade light, a reduced red to far-red (R/FR) ratio and low photosynthetically active radiation (PAR), on the elongation of the youngest internode of sunflower (Helianthus annuus) seedlings. Maximal internode growth (length and biomass) was induced by a shade light having a reduced R/FR ratio (0.85) under the low PAR of 157 micromol m(-2) s(-1). Reducing the R/FR ratio under normal PAR (421 micromol m(-2) s(-1)) gave similar growth trends, albeit with a reduced magnitude of the response. Leaf area growth showed a rather different pattern, with maximal growth occurring at the higher (normal) PAR of 421 micromol m(-2) s(-1)), but with variable effects being seen with changes in light quality. Reducing the R/FR ratio (by enrichment with FR) gave significant increases in gibberellin A(1) (GA(1)) and indole-3-acetic acid (IAA) contents in both internodes and leaves. By contrast, a lower PAR irradiance had no significant effect on GA(1) and IAA levels in internodes or leaves, but did increase the levels of other GAs, including two precursors of GA(1). Interestingly, both leaf and internode hormone content (GAs, IAA) are positively and significantly correlated with growth of the internode, as are leaf levels of abscisic acid (ABA). However, changes in these three hormones bear little relationship to leaf growth. By implication, then, the leaf may be the major source of GAs and IAA, at least, for the rapidly elongating internode. Several other hormones were also assessed in leaves for plants grown under varying R/FR ratios and PARs. Leaf ethylene production was not influenced by changes in R/FR ratio, but was significantly reduced under the normal (higher) PAR, the irradiance treatment which increased leaf growth. Levels of the growth-active free base and riboside cytokinins were significantly increased in leaves under a reduced R/FR ratio, but only at the higher (normal) PAR irradiance; other light quality treatments evoked no significant changes. Taken in toto, these results indicate that both components of shade light can influence the levels of a wide range of endogenous hormones in internodes and leaves while evoking increased internode elongation and biomass accumulation. However, it is light quality changes (FR enrichment) which are most closely tied to increased hormone content, and especially with increased GA and IAA levels. Finally, the increases seen in internode and leaf GA content with a reduced R/FR ratio are consistent with FR enrichment inducing an overall increase in sunflower seedling GA biosynthesis.  相似文献   

11.
克隆植物中国沙棘生长对外源植物激素的响应   总被引:1,自引:0,他引:1  
关于植物克隆生长调节问题,目前集中于外在机制的研究。为了探讨中国沙棘克隆生长调节的内在机制,采用3×3回归设计进行田间试验,期望了解不同生长性状对IAA和CTK用量及其配比的响应规律。结果表明:(1)生长性状对激素用量的响应规律呈典型的钟形曲面模式,即各生长指标均存在一个产量峰值,峰值以前生长指标随IAA、CTK用量的增大而提高,峰值以后生长指标随IAA、CTK用量的增大而下降。(2)不同生长指标对激素用量及其配比的响应规律具有一定差异,较高的IAA比例有利于促进树高生长,较高的CTK比例有利于促进地径和冠幅生长,而几乎相等的IAA和CTK用量有利于种群生物量积累。(3)在激素用量适宜的情况下,中国沙棘生长潜力得到充分发挥,形成高大的个体,较多的子株,有利于提高种群对生境资源的占据和利用,并提高排斥其他植物种类入侵的能力;当激素用量过高或过低时,中国沙棘以降低生长量为代价,形成矮小的个体,减少子株数量,有利于削弱个体之间的竞争。这一结果为了解中国沙棘克隆生长内在调节机制提供了线索。(4)根据不同生长指标的激素效应方程,求出了相应的IAA和CTK的最佳用量和最佳配比,以及合理施激素区域和最低成本线。(5)克隆子株数量增幅与地径和冠幅生长量增幅呈极显著正相关、与种群生物量增幅呈显著正相关,即适宜的IAA和CTK用量既可加速个体生长、也能促进克隆子株的产生。  相似文献   

12.
Melatonin and serotonin are indoleamines first identified as neurotransmitters in vertebrates; they have now been found to be ubiquitously present across all forms of life. Both melatonin and serotonin were discovered in plants several years after their discovery in mammals, but their presence has now been confirmed in almost all plant families. The mechanisms of action of melatonin and serotonin are still poorly defined. Melatonin and serotonin possess important roles in plant growth and development, including functions in chronoregulation and modulation of reproductive development, control of root and shoot organogenesis, maintenance of plant tissues, delay of senescence, and responses to biotic and abiotic stresses. This review focuses on the roles of melatonin and serotonin as a novel class of plant growth regulators. Their roles in reproductive and vegetative plant growth will be examined including an overview of current hypotheses and knowledge regarding their mechanisms of action in specific responses.  相似文献   

13.
Both seed germination and early seedling establishment are important biological processes in a plant's lifecycle. Seed longevity is a key trait in agriculture, which directly influences seed germination and ultimately determines crop productivity and hence food security. Numerous studies have demonstrated that seed deterioration is regulated by complex interactions between diverse endogenous genetically controlled factors and exogenous environmental cues, including temperature, relative humidity, and oxygen partial pressure during seed storage. The endogenous factors, including the chlorophyll concentration, the structure of the seed coat, the balance of phytohormones, the concentration of reactive oxygen species, the integrity of nucleic acids and proteins and their associated repair systems, are also involved in the control of seed longevity. A precise understanding of the regulatory mechanisms underlying seed longevity is becoming a hot topic in plant molecular biology. In this review, we describe recent research into the regulation of seed longevity and the interactions between the various environmental and genetic factors. Based on this, the current state-of-play regarding seed longevity regulatory networks will be presented, particularly with respect to agricultural seed storage, and the research challenges to be faced in the future will be discussed.  相似文献   

14.
植物激素相关microRNA研究进展   总被引:3,自引:0,他引:3  
microRNA(miRNA)是22nt左右的非编码RNA,主要在转录后水平调节基因的活性。miRNA通过与靶基因的互补位点结合从而降解靶基因mRNA或抑制其翻译。近年的研究发现,miRNA在植物生长发育中发挥着重要的调控作用。目前已知一些miRNA参与植物激素信号途径的切入点,这为我们了解miRNA和植物激素在植物发育中的作用提供了新思路。本文综述了miRNA参与植物激素信号应答及生物合成的研究进展,并对一些miINA在植物激素信号应答中可能的作用进行了讨论。  相似文献   

15.
马可波罗百合的组织培养和离体快繁   总被引:6,自引:0,他引:6  
丁兰  赵庆芳  刘瑞梅 《广西植物》2004,24(1):37-39,80
以马可波罗百合的鳞片、茎段和茎尖为外植体 ,成功建立了快速无性繁殖系。诱导鳞片产生丛芽的最佳培养基为 :MS +0 .3~ 0 .8mg/LBA +0 .0 5mg/LNAA ;茎尖的最佳诱导培养基为 :MS +2mg/LBA +0 .0 5mg/LNAA ;茎段的最佳诱导培养基为 :MS +0 .8mg/LBA +0 .1mg/LNAA。丛芽增殖培养基 :MS +0 .2mg/LBA +0 .1mg/LNAA和MS +0 .2mg/LBA +0 .1mg/LIAA。生根诱导最佳培养基为 1 /2MS +0 .2mg/LKT +0 .0 5~ 0 .5mg/LNAA。  相似文献   

16.
The health of the plant and soil fertility is dependent on the plant–microbes interaction in the rhizosphere. Microbial life tends to endure various rhizosphere plant–microbe interactions. Phytohormones such as auxins, cytokinins, gibberellic acid, ethylene and abscisic acid are termed as the classical group of hormones. Out of the 70 rhizobacterial strains isolated from the Coleus rhizosphere, three different rhizobacterial strains Pseudomonas stutzeri MTP40, Stenotrophomonas maltophilia MTP42 and Pseudomonas putida MTP50 having plant growth-promoting attributes were isolated and characterized for its phytohormone-producing ability. The phytohormones such as indole 3-acetic acid (IAA), gibberellic acid and cytokinin (kinetin and 6-benzyladenosine) were affirmed in culture supernatant of the above isolates. IAA was detected in all the three isolates, where in highest production was found in S. maltophilia MTP42 (240?µg/mL) followed by P. stutzeri MTP40 (250?µg/mL) and P. putida MTP50 (233?µg/mL). Gibberellic acid production was found maximum in MTP40 (34?µg/mL), followed by MTP42 (31?µg/mL) and MTP50 (27?µg/mL). The cytokinin production from the isolates, namely, MTP40, MTP42 and MTP50 were 13, 11 and 7.5?µg/mL, respectively. The isolates showing the production of plant growth enhancing phytohormones can be commercialized as potent bioformulations.  相似文献   

17.
激素对贯叶连翘器官分化的影响   总被引:4,自引:0,他引:4  
贯叶连翘 (HypericumperforatumL .)为多年生草本 ,中国民间主要用于止血、抗炎、妇科病等[1] ,欧洲民间用于治疗创伤也有相当长的历史。近年来 ,欧、美等国家和地区将其应用于抑郁症的治疗 ,取得了很好的疗效。 80年代后期 ,由于发现该植物体内含有显著抗  相似文献   

18.
紫茎泽兰生长发育过程中糖、激素、单宁、黄酮的变化   总被引:2,自引:1,他引:2  
采用高效液相和分光光度法对紫茎泽兰不同发育阶段(种子,芽,幼苗和成株)糖、激素、单宁及总黄酮含量差异进行了研究。结果表明:不同糖类的变化。紫茎泽兰的葡萄糖含量以芽最高,为6.93%;而种子(0.16%)、幼苗(1.27%)、成株(1.07%)均明显低于芽阶段;同样,紫茎泽兰中蔗糖含量芽较高,为2.68%,而种子(0.32%)、幼苗(0.52%)、成株(0.09%)均明显低于芽阶段。果糖含量的变化,最大值也是在芽阶段(3.28%),其次为种子阶段(2.56%),而种子和成株阶段均很低(0.14%和0.55%)。测定中,海藻糖、棉子糖、甘露糖的含量差别很大,仅种子阶段测定出3种糖的含量,结果表明差别不大,依次为0.04%、0.04%、0.03%。激素类的变化。在不同发育阶段,紫茎泽兰芽阶段吲哚乙酸(IAA)含量较高,达到14.20μg·g-1 Dw ,比种子阶段高1.25μg·g-1 Dw,是幼苗的1.63倍,成株阶段的5.55倍。紫茎泽兰赤霉素(GA)含量在不同发育阶段存在着明显的差异,而且种子的GA含量(901.11μg·g-1 Dw)明显高于芽、幼苗和成株阶段,而以芽和幼苗阶段含量最低,分别为97.35和84.29μg·g-1 Dw,成株阶段略高于芽和幼苗阶段,为280.50μg·g-1 Dw。单宁类的变化:紫茎泽兰单宁变化差异明显,紫茎泽兰种子中单宁含量为1.98%,明显高于芽、幼苗和成株阶段(<0.30%);总黄酮类的变化:紫茎泽兰总黄酮含量在发育过程中呈不断上升趋势。紫茎泽兰种子中总黄酮含量很微弱,为0.04%,而芽、幼苗和成株阶段的紫茎泽兰总黄酮含量均明显高于种子阶段,并且这3个阶段之间含量差别不大,分别为(0.60%、0.64%、0.62%)。这些结果说明,糖、激素、单宁及总黄酮含量与植物生长发育的基本规律和代谢过程的调控密切相关。  相似文献   

19.
种子休眠与萌发是截然不同而又紧密联系的两个生理过程,也是植物生命周期中的关键阶段,对自然状态下的植物物种繁殖与地理分布以及农业生产均具有重要意义,且两个过程受不同内源激素和环境信号之间的精确互作调控。大量研究表明,蛋白质磷酸化修饰作为一种重要的翻译后修饰方式,参与调控种子休眠与萌发以及植物逆境胁迫响应等过程并发挥重要作...  相似文献   

20.
Summary Cytokinins are essential hormones for plant growth and development. They are also of vital importance for in vitro manipulations of plant cells and tissues. The biological activities and chemistry of cytokinins are well defined but very little is known about their mode of action and it is only recently that cytokinin genes have been identified in plants. This review summarizes the current status of knowledge on cytokinin biosynthesis, metabolism and signal transduction, with an emphasis on genes encoding metabolic enzymes and putative receptors, and genes rapidly induced by cytokinins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号