首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In "The New Head Hypothesis Revisited," R.G. Northcutt (2005. J Exp Zool (Mol Dev Evol) 304B:274-297) evaluates the original postulates of this hypothesis (Northcutt and Gans, 1983. Quart Rev Biol 58:1-28). One of these postulates is that the brain-particularly the forebrain-evolved at essentially the same time as many neural crest and neurogenic placode derivatives-including sensory ganglia, dermal skeleton and sensory capsules of the head, and branchial arches. Northcutt's subsequent paper in 1996 concluded with the idea that transitional forms might not have occurred at the origin of vertebrates. Butler proposed a "Serial Transformation" hypothesis in 2000, which disputed the latter idea in that paired eyes and an enlarged brain (but lacking telencephalon) were envisioned to have been gained before elaboration of most neural crest and neurogenic placodal derivatives. In 2003, J. Mallatt and J.-Y. Chen analyzed fossils of the Cambrian animal Haikouella, which strongly support its affinity to craniates and aspects of several hypotheses, including Butler's transformational model, because although branchial bars are present, most other neural crest and placodal derivatives are absent, while paired eyes and an enlarged brain (but probably without telencephalon) are present. A more complete picture of vertebrate origins can be realized when the various hypotheses are constructively reconciled.  相似文献   

2.
Although numerous in vitro experiments suggest that extracellular matrix molecules like laminin can influence neural crest migration, little is known about their function in the embryo. Here, we show that laminin alpha5, a gene up-regulated during neural crest induction, is localized in regions of newly formed cranial and trunk neural folds and adjacent neural crest migratory pathways in a manner largely conserved between chick and mouse. In laminin alpha5 mutant mice, neural crest migratory streams appear expanded in width compared to wild type. Conversely, neural folds exposed to laminin alpha5 in vitro show a reduction by half in the number of migratory neural crest cells. During gangliogenesis, laminin alpha5 mutants exhibit defects in condensing cranial sensory and trunk sympathetic ganglia. However, ganglia apparently recover at later stages. These data suggest that the laminin alpha5 subunit functions as a cue that restricts neural crest cells, focusing their migratory pathways and condensation into ganglia. Thus, it is required for proper migration and timely differentiation of some neural crest populations.  相似文献   

3.
Cells of the neural crest participate in a major class of cell migratory events during embryonic development. From indirect evidence, it has been suggested that fibronectin (FN) might be involved in these events. We have directly tested the role of FN in neural crest cell adhesion and migration using several in vitro model systems. Avian trunk neural crest cells adhered readily to purified plasma FN substrates and to extracellular matrices containing cellular FN. Their adhesion was inhibited by antibodies to a cell-binding fragment of FN. In contrast, these cells did not adhere to glass, type I collagen, or to bovine serum albumin in the absence of FN. Neural crest cell adhesion to laminin (LN) was significantly less than to FN; however, culturing of crest cells under conditions producing an epithelioid phenotype resulted in cells that could bind equally as well to LN as to FN. The migration of neural crest cells appeared to depend on both the substrate and the extent of cell interactions. Cells migrated substantially more rapidly on FN than on LN or type I collagen substrates; if provided a choice between stripes of FN and glass or LN, cells migrated preferentially on the FN. Migration was inhibited by antibodies against the cell-binding region of FN, and the inhibition could be reversed by a subsequent addition of exogenous FN. However, the migration on FN was random and displayed little persistence of direction unless cells were at high densities that permitted frequent contacts. The in vitro rate of migration of cells on FN-containing matrices was 50 microns/h, similar to their migration rates along the narrow regions of FN-containing extracellular matrix in migratory pathways in vivo. These results indicate that FN is important for neural crest cell adhesion and migration and that the high cell densities of neural crest cells in the transient, narrow migratory pathways found in the embryo are necessary for effective directional migration.  相似文献   

4.
In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.  相似文献   

5.
Neural crest contributions to the lamprey head   总被引:5,自引:0,他引:5  
The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.  相似文献   

6.
In the vertebrate head, the peripheral components of the sensory nervous system are derived from two embryonic cell populations, the neural crest and cranial sensory placodes. Both arise in close proximity to each other at the border of the neural plate: neural crest precursors abut the future central nervous system, while placodes originate in a common preplacodal region slightly more lateral. During head morphogenesis, complex events organise these precursors into functional sensory structures, raising the question of how their development is coordinated. Here we review the evidence that neural crest and placode cells remain in close proximity throughout their development and interact repeatedly in a reciprocal manner. We also review recent controversies about the relative contribution of the neural crest and placodes to the otic and olfactory systems. We propose that a sequence of mutual interactions between the neural crest and placodes drives the coordinated morphogenesis that generates functional sensory systems within the head.  相似文献   

7.
The neuromodulatory effects of dopamine on the central nervous system of craniates are mediated by two classes of G protein-coupled receptors (D1 and D2), each comprising several subtypes. A systematic isolation and characterization of the D1 and D2-like receptors was carried out in most of the Craniate groups. It revealed that two events of gene duplications took place during vertebrate evolution, before or simultaneously to the emergence of Gnathostomes. It led to the conservation of two-to-four paralogous receptors (subtypes), depending on the species. Additional duplication of dopamine receptor gene occurred independently in the teleost fish lineage. Duplicated genes were maintained in most of the vertebrate groups, certainly by the acquisition of a few functional characters, specific of each subtypes, as well as by discrete changes in their expression territories in the brain. The evolutionary scenario elaborated from these data suggests that receptor gene duplications were the necessary conditions for the expansion of vertebrate forebrain to occur, allowing dopamine systems to exert their fundamental role as modulator of the adaptive capabilities acquired by vertebrate species.  相似文献   

8.
9.
Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.  相似文献   

10.
11.
The precise migration of neural crest cells is apparently controlled by their environment. We have examined whether the embryonic tissue spaces in which crest cells normally migrate are sufficient to account for the pattern of crest cell distribution and whether other migratory cells could also distribute themselves along these pathways. To this end, we grafted a variety of cell types into the initial crest cell migratory pathway in chicken embryos. These cell types included (a) undifferentiated neural crest cells isolated from cultured neural tubes, intact crest from cranial neural folds, and crest derivatives (pigment cells and spinal ganglia); (b) normal embryonic fibroblastic cells from somite, limb bud, lateral plate, and heart ventricle; and (c) a transformed fibroblastic cell line (Sarcoma 180). Crest cells or their derivatives grafted into the crest migratory pathway all distributed normally, although in contrast to the result when neural tubes were graftedin situ, fewer cells were observed in the epithelium and few or none were localized in the nascent spinal ganglia. Grafted quail somite cells contributed to normal somitic structures and did not migrate extensively in the chicken host. Other fibroblasts did not migrate along cranial or trunk crest pathways, or invade adjacent tissues, but remained intact at the graft site. Sarcoma 180 cells, however, distributed themselves along the normal trunk crest pathway. Cranial and trunk crest cells and crest derivatives grafted ectopically in the limb bud or somite also dispersed, and were found along the ventral migratory pathway. Fibroblastic cells grafted into ectopic sites again remained intact and did not invade host tissue. We conclude (1) that neural crest cells and their derivatives are highly motile and invasive in their normal pathway, as well as in unfamiliar embryonic environments; and (2) that the crest pathway does not act solely to direct neural crest cells, since at least one transformed cell can follow the crest migratory route.  相似文献   

12.
An Overview of the Organization of the Brain of Actinopterygian Fishes   总被引:2,自引:1,他引:1  
SYNOPSIS. The brain of actinopterygian fishes can be subdividedinto five principal parts, rhombencephalon, cerebellum, mesencephalon,diencephalon and telencephalon, each of which contains a numberof separate morphological entities: nuclei, areas or zones.Analysis of the origin and termination of the cranial nervesand their components reveals that many of the morphologicalentities distinguished in the actinopterygian brain can be interpretedin terms of elementary sensory and motor functions. Experimentalanatomical and physiological studies on the fiber connectionsof the entities thus defined have led to a functional interpretationof many other parts of the brain. Thus, the central circuitryrelated to such sensory functions as hydrodynamic pressoreception,electroreception, vision, gustation and olfaction are well-known,and the same holds true for the motor systems related to feedingand locomotion. However, there are still many regions in theactinopterygian brain the functional significance of which ispoorly understood, and it should be emphasized that most ofour knowledge on the organization of the brain of this grouprests merely on observations in teleosts. One of the most interestingaspects of actinopterygian neurobiology is that the telencephalonin this group develops in a way which differs fundamentallyfrom that found in all other craniates, and that the telencephalonshows a marked progressive differentiation in the series: polypterids—chondrosteans—halecomorphs—teleosts.  相似文献   

13.
The cutaneous sensory neurons of the ophthalmic lobe of the trigeminal ganglion are derived from two embryonic cell populations, the neural crest and the paired ophthalmic trigeminal (opV) placodes. Pax3 is the earliest known marker of opV placode ectoderm in the chick. Pax3 is also expressed transiently by neural crest cells as they emigrate from the neural tube, and it is reexpressed in neural crest cells as they condense to form dorsal root ganglia and certain cranial ganglia, including the trigeminal ganglion. Here, we examined whether Pax3+ opV placode-derived cells behave like Pax3+ neural crest cells when they are grafted into the trunk. Pax3+ quail opV ectoderm cells associate with host neural crest migratory streams and form Pax3+ neurons that populate the dorsal root and sympathetic ganglia and several ectopic sites, including the ventral root. Pax3 expression is subsequently downregulated, and at E8, all opV ectoderm-derived neurons in all locations are large in diameter, and virtually all express TrkB. At least some of these neurons project to the lateral region of the dorsal horn, and peripheral quail neurites are seen in the dermis, suggesting that they are cutaneous sensory neurons. Hence, although they are able to incorporate into neural crest-derived ganglia in the trunk, Pax3+ opV ectoderm cells are committed to forming cutaneous sensory neurons, their normal fate in the trigeminal ganglion. In contrast, Pax3 is not expressed in neural crest-derived neurons in the dorsal root and trigeminal ganglia at any stage, suggesting either that Pax3 is expressed in glial cells or that it is completely downregulated before neuronal differentiation. Since Pax3 is maintained in opV placode-derived neurons for some considerable time after neuronal differentiation, these data suggest that Pax3 may play different roles in opV placode cells and neural crest cells.  相似文献   

14.
An immunohistochemical study of the localization of cytotactin and cytotactin-binding (CTB) proteoglycan throughout embryonic development of the anuran Xenopus laevis reveals that both appear in a restricted pattern related to specific morphogenetic events. CTB proteoglycan expression is first detected during gastrulation at the blastopore lip. Later, it is seen in the archenteron roof around groups of cells forming the notochord, somites and neural plate. Cytotactin first appears after neurulation, and is restricted to the intersomitic regions. Both molecules appear along the migratory pathways of neural crest cells in the trunk and tail. Later, cytotactin is present at sites where neural crest cells differentiate, around the aorta and in the smooth muscle coat of the gut; CTB proteoglycan is absent from these sites. In the head, cytotactin is initially restricted to the regions between cranial somites, while CTB proteoglycan is distributed throughout the cranial mesenchyme. The expression of both molecules is later associated with key events in chondrogenesis during the development of the skull. After chondrogenesis, CTB proteoglycan is distributed throughout the cartilage matrix, while cytotactin is restricted to a thin perichondrial deposit. Both molecules are expressed in developing brain. These findings are compared to studies of the chick embryo and although distinct anatomical differences exist between frog and chick, the expression of these molecules is associated with similar developmental processes in both species. These include mesoderm segmentation, neural crest cell migration and differentiation, cartilage development, and central nervous system histogenesis.  相似文献   

15.
A sub-population of the neural crest is known to play a crucial role in development of the cardiac outflow tract. Studies in avians have mapped the complete migratory pathways taken by 'cardiac' neural crest cells en route from the neural tube to the developing heart. A cardiac neural crest lineage is also known to exist in mammals, although detailed information on its axial level of origin and migratory pattern are lacking. We used focal cell labelling and orthotopic grafting, followed by whole embryo culture, to determine the spatio-temporal migratory pattern of cardiac neural crest in mouse embryos. Axial levels between the post-otic hindbrain and somite 4 contributed neural crest cells to the heart, with the neural tube opposite somite 2 being the most prolific source. Emigration of cardiac neural crest from the neural tube began at the 7-somite stage, with cells migrating in pathways dorsolateral to the somite, medial to the somite, and between somites. Subsequently, cardiac neural crest cells migrated through the peri-aortic mesenchyme, lateral to the pharynx, through pharyngeal arches 3, 4 and 6, and into the aortic sac. Colonisation of the outflow tract mesenchyme was detected at the 32-somite stage. Embryos homozygous for the Sp2H mutation show delayed onset of cardiac neural crest emigration, although the pathways of subsequent migration resembled wild type. The number of neural crest cells along the cardiac migratory pathway was significantly reduced in Sp2H/Sp2H embryos. To resolve current controversy over the cell autonomy of the splotch cardiac neural crest defect, we performed reciprocal grafts of premigratory neural crest between wild type and splotch embryos. Sp2H/Sp2H cells migrated normally in the +/+ environment, and +/+ cells migrated normally in the Sp2H/Sp2H environment. In contrast, retarded migration along the cardiac route occurred when either Sp2H/+ or Sp2H/Sp2H neural crest cells were grafted into the Sp2H/Sp2H environment. We conclude that the retardation of cardiac neural crest migration in splotch mutant embryos requires the genetic defect in both neural crest cells and their migratory environment.  相似文献   

16.
I evaluate the lines of evidence—cell types, genes, gene pathways, fossils—in putative chordate ancestors—cephalochordates and ascidians—pertaining to the evolutionary origin of the vertebrate neural crest. Given the intimate relationship between the neural crest and the dorsal nervous system during development, I discuss the dorsal nervous system in living (extant) members of the two groups, especially the nature, and genes, and gene regulatory networks of the brain to determine whether any cellular and/or molecular precursors (latent homologues) of the neural may have been present in ancestral cephalochordates or urochordates. I then examine those fossils that have been interpreted as basal chordates or cephalochordates to determine whether they shed any light on the origins of neural crest cell (NCC) derivatives. Do they have, for example, elements of a head skeleton or pharyngeal arches, two fundamental vertebrate characters (synapomorphies)? The third topic recognizes that the origin of the neural crest in the first vertebrates accompanied the evolution of a brain, a muscular pharynx, and paired sensory organs. In a paradigm-breaking hypothesis—often known as the ‘new head hypothesis’—Carl Gans and Glen Northcutt linked these evolutionary innovations to the evolution of the neural crest and ectodermal placodes (Gans and Northcutt Science 220:268-274, 1983. doi:10.1126/science.220.4594.268; Northcutt and Gans The Quarterly Review of Biology 58:1–28, 1983. doi:10.1086/413055). I outline the rationale behind the new head hypothesis before turning to an examination of the pivotal role played by NCCs in the evolution of pharyngeal arches, in the context of the craniofacial skeleton. Integrations between the evolving vertebrate brain, muscular pharynx and paired sensory organs may have necessitated that the pharyngeal arch skeletal system—and subsequently, the skeleton of the jaws and much of the skull (the first vertebrates being jawless)—evolved from NCCs whose developmental connections were to neural ectoderm and neurons rather than to mesoderm and connective tissue; mesoderm produces much of the vertebrate skeleton, including virtually all the skeleton outside the head. The origination of the pharyngeal arch skeleton raises the issue of the group of organisms in which and how cartilage arose as a skeletal tissue. Did cartilage arise in the basal proto-vertebrate from a single germ layer, cell layer or tissue, or were cells and/or genes co-opted from several layers or tissues? Two recent studies utilizing comparative genomics, bioinformatics, molecular fingerprinting, genetic labeling/cell selection, and GeneChip Microarray technologies are introduced as powerful ways to approach the questions that are central to this review.  相似文献   

17.
The prechordal cranium, or the anterior half of the neurocranial base, is a key structure for understanding the development and evolution of the vertebrate cranium, but its embryonic configuration is not well understood. It arises initially as a pair of cartilaginous rods, the trabeculae, which have been thought to fuse later into a single central stem called the trabecula communis (TC). Involvement of another element, the intertrabecula, has also been suggested to occur rostral to the trabecular rods and form the medial region of the prechordal cranium. Here, we examined the origin of the avian prechordal cranium, especially the TC, by observing the craniogenic and precraniogenic stages of chicken embryos using molecular markers, and by focal labeling of the ectomesenchyme forming the prechordal cranium. Subsequent to formation of the paired trabeculae, a cartilaginous mass appeared at the midline to connect their anterior ends. During this midline cartilage formation, we did not observe any progressive medial expansion of the trabeculae. The cartilages consisted of premandibular ectomesenchyme derived from the cranial neural crest. This was further divided anteroposteriorly into two portions, derived from two neural crest cell streams rostral and caudal to the optic vesicle, called preoptic and postoptic neural crest cells, respectively. Fate-mapping analysis elucidated that the postoptic neural crest cells were distributed exclusively in the lateroposterior part of the prechordal cranium corresponding to the trabeculae, whereas the preoptic stream of cells occupied the middle anterior part, differentiating into a cartilage mass corresponding to the intertrabecula. These results suggest that the central stem of the prechordal cranium of gnathostomes is composed of two kinds of distinct cartilaginous modules: a pair of trabeculae and a median intertrabecula, each derived from neural crest cells populating distinct places of the craniofacial primordia through specific migratory pathways.  相似文献   

18.
19.
Wnt/β-catenin signaling controls multiple steps of neural crest development, ranging from neural crest induction, lineage decisions, to differentiation. In mice, conditional β-catenin inactivation in premigratory neural crest cells abolishes both sensory neuron and melanocyte formation. Intriguingly, the generation of melanocytes is also prevented by activation of β-catenin in the premigratory neural crest, which promotes sensory neurogenesis at the expense of other neural crest derivatives. This raises the question of how Wnt/β-catenin signaling regulates the formation of distinct lineages from the neural crest. Using various Cre lines to conditionally activate β-catenin in neural crest cells at different developmental stages, we show that neural crest cell fate decisions in vivo are subject to temporal control by Wnt/β-catenin. Unlike in premigratory neural crest, β-catenin activation in migratory neural crest cells promotes the formation of ectopic melanoblasts, while the production of most other lineages is suppressed. Ectopic melanoblasts emerge at sites of neural crest target structures and in many tissues usually devoid of neural crest-derived cells. β-catenin activation at later stages in glial progenitors or in melanoblasts does not lead to surplus melanoblasts, indicating a narrow time window of Wnt/β-catenin responsiveness during neural crest cell migration. Thus, neural crest cells appear to be multipotent in vivo both before and after emigration from the neural tube but adapt their response to extracellular signals in a temporally controlled manner.  相似文献   

20.
Genomic analysis of neural crest induction   总被引:3,自引:0,他引:3  
The vertebrate neural crest is a migratory stem cell population that arises within the central nervous system. Here, we combine embryological techniques with array technology to describe 83 genes that provide the first gene expression profile of a newly induced neural crest cell. This profile contains numerous novel markers of neural crest precursors and reveals previously unrecognized similarities between neural crest cells and endothelial cells, another migratory cell population. We have performed a secondary screen using in situ hybridization that allows us to extract temporal information and reconstruct the progression of neural crest gene expression as these cells become different from their neighbors and migrate. Our results reveal a sequential 'migration activation' process that reflects stages in the transition to a migratory neural crest cell and suggests that migratory potential is established in a pool of cells from which a subset are activated to migrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号