首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell free extracts were prepared from E. coli CRT266 9 min after infection with T3 phages. RNA synthesis in these extracts is almost entirely due to T3 RNA polymerase. The inactivation of T3 RNA polymerase in these extracts proceeds rapidly at 42 degrees C. 90% of the activity is lost within 10 min at this temperature. Under conditions where the formation of a stable initiation complex with T3 DNA is possible, i.e., in the presence of GPT, APT, and UTP the T3 RNA polymerase becomes protected against heat inactivation losing only )0% of its activity during an exposure to 42 degrees C for 10 min. Studies on the time course of RNA synthesis have shown that reinitiation is still possible at 37 degrees C and 42 degrees C. At 44 degrees C, however, RNA synthesis stops abruptly after 3 min indicating that reinitiation does no longer take place. The elongation of already initiated T3 RNA chains is rather resistant to heat. At 44 degrees C the same elongation rates are observed as at 37 degrees C and 42 degrees C, respectively.  相似文献   

2.
Lysozyme formation induced by bacteriophage T3 was studied in the ts-mutant E. coli CRT 266 (dnaBts) and in the wild-type E. coli CR 34--45 (dnaB+) at different temperatures. It was found that lysozyme was formed in E. coli CRT 266, however, no lysozyme synthesis took place at 41.5 degrees C. These results indicate that the expression of the lysozyme gene is disturbed in the ts-mutant at 41.5 degrees C.  相似文献   

3.
4.
Bacteriophage T3-induced RNA polymerase is rapidly inactivated at 42 degrees C. Addition of T3 DNA delays this process for 30 s and reduces the rate with which the enzyme activity is lost indicating that a labile binary complex between T3 DNA and polymerase must have been formed. The ternary complex between T3-specific RNA polymerase, T3 DNA, and nascent RNA chains obtained when the enzyme is incubated with T3 DNA, GTP, ATP, and UTP is stable to heat (42 degrees C) and only slowly inactivated by polyvinyl sulfate. The optimal temperature for the formation of polyanionresistant ternary complexes is 30 degrees C while the elongation of T3 RNA chains proceeds fastest at 38 degrees C.  相似文献   

5.
6.
7.
Production of bacteriophages T2, T4, and T6 at 42.8 to 44 degrees C was increased from 8- to 260-fold by adapting the Escherichia coli host (grown at 30 degrees C) to growth at the high temperature for 8 min before infection; this increase was abolished if the host htpR (rpoH) gene was inactive. Others have shown that the htpR protein increases or activates the synthesis of at least 17 E. coli heat shock proteins upon raising the growth temperature above a certain level. At 43.8 to 44 degrees C in T4-infected, unadapted cells, the rates of RNA, DNA, and protein synthesis were about 100, 70, and 70%, respectively, of those in T4-infected, adapted cells. Production of the major processed capsid protein, gp23, was reduced significantly more than that of most other T4 proteins in unadapted cells relative to adapted cells. Only 4.6% of the T4 DNA made in unadapted cells was resistant to micrococcal nuclease, versus 50% in adapted cells. Thus, defective maturation of T4 heads appears to explain the failure of phage production in unadapted cells. Overproduction of the heat shock protein GroEL from plasmids restored T4 production in unadapted cells to about 50% of that seen in adapted cells. T4-infected, adapted E. coli B at around 44 degrees C exhibited a partial tryptophan deficiency; this correlated with reduced uptake of uracil that is probably caused by partial induction of stringency. Production of bacteriophage T7 at 44 degrees C was increased two- to fourfold by adapting the host to 44 degrees C before infection; evidence against involvement of the htpR (rpoH) gene is presented. This work and recent work with bacteriophage lambda (C. Waghorne and C.R. Fuerst, Virology 141:51-64, 1985) appear to represent the first demonstrations for any virus that expression of the heat shock regulon of a host is necessary for virus production at high temperature.  相似文献   

8.
9.
We identified and cloned an Escherichia coli gene called htrA (high temperature requirement). The htrA gene was originally discovered because mini-Tn10 transposon insertions in it allowed E. coli growth at 30 degrees C but prevented growth at elevated temperatures (above 42 degrees C). The htrA insertion mutants underwent a block in macromolecular synthesis and eventually lysed at the nonpermissive temperature. The htrA gene was located at approximately 3.7 min (between the fhuA and dapD loci) on the genetic map of E. coli and between 180 and 187.5 kilobases on the physical map. It coded for an unstable, 51-kilodalton protein which was processed by removal of an amino-terminal fragment, resulting in a stable, 48-kilodalton protein.  相似文献   

10.
Fifteen low-temperature conditional division mutants of Escherichia coli K-12 was isolated. They grew normally at 39 degrees C but formed filaments at 30 degrees C. All exhibited a coordinated burst of cell division when the filaments were shifted to the permissive temperature (39 degrees C). None of the various agents that stimulate cell division in other mutant systems (salt, sucrose, ethanol, and chloramphenicol) was very effective in restoring colony-forming ability at 25 degrees C or in stimulating cell division in broth. One of these mutants, strain JS10, was found to have an altered cell envelope as evidenced by increased sensitivity to deoxycholate and antibiotics, as well as leakage of ribonulcease I, a periplasmic enzyme. This mutant had normal rates of DNA synthesis, RNA synthesis, and phospholipid synthesis at both the nonpermissive and permissive temperatures. However, strain JS10 required new protein synthesis in the apparent absence of new RNA synthesis for division of filaments at the permissive temperature. The division of lesion in strain JS10 is cotransducible with malA, aroB, and glpD and maps within min 72 to 75 on the E. coli chromosome.  相似文献   

11.
Y Mano  H Sakai    T Komano 《Journal of virology》1979,30(3):650-656
phi X174am3trD, a temperature-resistant mutant of bacteriophage phi X174am3, exhibited a reduced ability to grow in a dnaP mutant, Escherichia coli KM107, at the restrictive temperature (43 degrees C). Under conditions at which the dnaP gene function was inactivated, the amount and the rate of phi X174am3trD DNA synthesis were reduced. The efficiency of phage attachment to E. coli KM107 at 43 degrees C was the same as to the parental strain, E. coli KD4301, but phage eclipse and phage DNA penetration were inhibited in E. coli KM107 at 43 degrees C. It is suggested that the dnaP gene product, which is necessary for the initiation of host DNA replication, participates in the conversion of attached phages to eclipsed particles and in phage DNA penetration in vivo in normal infection.  相似文献   

12.
The intracellular growth of bacteriophages T3, T4 and phi X174 was studied in Escherichia coli cells frozen to -196 degrees C and cooled to 0 degree C at various intervals from the instant of phage infection. The processes of biosynthesis were delayed and the latent period was longer in the growth of cells frozen to -196 degrees C. The levels of RNA and protein biosynthesis as well as the yield of phages decreased when cells were frozen at a later stage of the phage growth. No changes were found in the intracellular growth processes of the phages during the subsequent cultivation of the bacterium when it was infected and then cooled to 0 degree C.  相似文献   

13.
14.
AIMS: To investigate the behaviour of cold-adapted, log phase Escherichia coli exposed to temperatures that fluctuate below and above the minimum for growth. METHODS AND RESULTS: Log phase E. coli cultures were incubated at a constant temperature of 2, 4 or 6 degrees C or with temperatures allowed to increase from those temperatures for 35 min, to 10 degrees C, at 6-, 12- or 24-h intervals, as commonly occurs during retail display of chilled foods. At suitable intervals for each culture, the optical absorbance value was determined using a spectrophotometer, the forward angle light scatter was determined using a flow cytometer, and portions were spread on plate count agar for enumeration of colony forming units (CFU). Numbers of CFU decreased by 3 log units or increased by 1 log unit for cultures incubated at 6 degrees C for 17 days without or with temperatures fluctuations at < or =12-h intervals, respectively. Cells elongated when cultures were incubated at 4 or 2 degrees C with temperatures fluctuating at 6-h intervals, and at 6 degrees C at constant or fluctuating temperatures, but cells did not elongate in cultures incubated at a constant temperature of 2 or 4 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: The minimum growth temperature of E. coli is assumed to be > or =7 degrees C. Elongated cells were able to divide when temperatures rose from 6 degrees C to above 7 degrees C for <45 min at < or =12-h intervals. Such temperature fluctuations may be experienced by chilled foods during defrosting cycles of retail display cases. The finding that cells behave differently under fluctuating than at constant temperatures may significantly affect understanding of appropriate temperatures for the safe storage of chilled foods and for predictive modelling of bacterial growth in such foods.  相似文献   

15.
The release of the ribonucleic acid (RNA)-containing phage MS2 from Escherichia coli is accompanied by cellular lysis at 37 C, whereas at 30 C phage are released from intact cells. Chloramphenicol or rifampin prevents the release of progeny phage particles at both temperatures. Neither drug causes an immediate cessation of phage release and after inhibition of protein synthesis by chloramphenicol phage release proceeds for about 17 min at 37 C and about 35 min at 30 C. Rifampin does not inhibit phage release from mutant cells possessing a rifampin-resistant deoxyribonucleic acid-dependent RNA polymerase. The results indicate that a short-lived host-controlled protein(s) is essential for the release of RNA phage particles at both temperatures.  相似文献   

16.
Gene 5 of bacteriophage T7 encodes a DNA polymerase essential for phage replication. A single point mutation in gene 5 confers temperature sensitivity for phage growth. The mutation results in an alanine to valine substitution at residue 73 in the exonuclease domain. Upon infection of Escherichia coli by the temperature-sensitive phage at 42 degrees C, there is no detectable T7 DNA synthesis in vivo. DNA polymerase activity in these phage-infected cell extracts is undetectable at assay temperatures of 30 degrees C or 42 degrees C. Upon infection at 30 degrees C, both DNA synthesis in vivo and DNA polymerase activity in cell extracts assayed at 30 degrees C or 42 degrees C approach levels observed using wild-type T7 phage. The amount of soluble gene 5 protein produced at 42 degrees C is comparable to that produced at 30 degrees C, indicating that the temperature-sensitive phenotype is not due to reduced expression, stability, or solubility. Thus the polymerase induced at elevated temperatures by the temperature-sensitive phage is functionally inactive. Consistent with this observation, biochemical properties and heat inactivation profiles of the genetically altered enzyme over-produced at 30 degrees C closely resemble that of wild-type T7 DNA polymerase. It is likely that the polymerase produced at elevated temperatures is a misfolded intermediate in its folding pathway.  相似文献   

17.
The work is concerned with studying the breakdown of proteins and RNA when a polyauxotrophic Escherichia coli strain is incubated in a salt solution without amino acids, phosphorus, nitrogen and glucose at 43 degrees C as well as the ability of starving bacterial cells to recommence protein and RNA synthesis (also in the course of phage T4 infection) and to reproduce bacteriophages T4, lambda and MS2. Within the first two hours of the incubation, 12% of proteins and 40% of RNA break down to acid-soluble fragments. Then protein degradation stops while RNA decomposition goes on, but at a lower rate. Within 4-6 h of starvation, the rate of protein and RNA synthesis drops down 4-5 times and the survival rate equals 40-60% when the cells are transferred onto a complete medium. The quantitative characteristics of phages T4, lambda and MS2 reproduction fall down in prestarved cells. The authors speculate that E. coli cells die off in the course of starvation not because some unique structure is destroyed, but owing to the fact that the activity of enzymes and ribosomes gradually declines. As a result, the synthetic activity of the cell drops down abruptly and irreversibly because the enzymes are inactivated and RNA breaks down, which eventually causes cell death.  相似文献   

18.
Biocontrol of Escherichia coli O157 with O157-specific bacteriophages.   总被引:2,自引:0,他引:2  
Escherichia coli O157 antigen-specific bacteriophages were isolated and tested to determine their ability to lyse laboratory cultures of Escherichia coli O157:H7. A total of 53 bovine or ovine fecal samples were enriched for phage, and 5 of these samples were found to contain lytic phages that grow on E. coli O157:H7. Three bacteriophages, designated KH1, KH4, and KH5, were evaluated. At 37 or 4 degrees C, a mixture of these three O157-specific phages lysed all of the E. coli O157 cultures tested and none of the non-O157 E. coli or non-E. coli cultures tested. These results required culture aeration and a high multiplicity of infection. Without aeration, complete lysis of the bacterial cells occurred only after 5 days of incubation and only at 4 degrees C. Phage infection and plaque formation were influenced by the nature of the host cell O157 lipopolysaccharide (LPS). Strains that did not express the O157 antigen or expressed a truncated LPS were not susceptible to plaque formation or lysis by phage. In addition, strains that expressed abundant mid-range-molecular-weight LPS did not support plaque formation but were lysed in liquid culture. Virulent O157 antigen-specific phages could play a role in biocontrol of E. coli O157:H7 in animals and fresh foods without compromising the viability of other normal flora or food quality.  相似文献   

19.
The mutM (fpg) gene, which encodes a DNA glycosylase that excises an oxidatively damaged form of guanine, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 266 amino acid protein with a molecular mass of approximately 30 kDa. Its predicted amino acid sequence showed 42% identity with the Escherichia coli protein. The amino acid residues Cys, Asn, Gln and Met, known to be chemically unstable at high temperatures, were decreased in number in T.thermophilus MutM protein compared to those of the E.coli one, whereas the number of Pro residues, considered to increase protein stability, was increased. The T.thermophilus mutM gene complemented the mutability of the E.coli mutM mutY double mutant, suggesting that T. thermophilus MutM protein was active in E.coli. The T.thermophilus MutM protein was overproduced in E.coli and then purified to homogeneity. Size-exclusion chromatography indicated that T. thermophilus MutM protein exists as a more compact monomer than the E.coli MutM protein in solution. Circular dichroism measurements indicated that the alpha-helical content of the protein was approximately 30%. Thermus thermophilus MutM protein was stable up to 75 degrees C at neutral pH, and between pH 5 and 11 and in the presence of up to 4 M urea at 25 degrees C. Denaturation analysis of T.thermophilus MutM protein in the presence of urea suggested that the protein had at least two domains, with estimated stabilities of 8.6 and 16.2 kcal/mol-1, respectively. Thermus thermophilus MutM protein showed 8-oxoguanine DNA glycosylase activity in vitro at both low and high temperatures.  相似文献   

20.
The bacteriophage T4-induced alt and mod gene products covalently add ADP-ribose to the Escherichia coli RNA polymerase alpha polypeptides; phage carrying either an alt or a mod mutation are viable. A genetic cross between T4alt and T4mod phages yielded alt mod recombinant progeny which could not ADP ribosylate RNA polymerase at all, yet grew apparently normally. Thus, ADP ribosylation of RNA polymerase appeared to be nonessential for T4 development (at least in E. coli B/r and E. coli CR63), even though the phage has evolved two distinct enzymes to catalyze this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号