首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The evidence supporting universal significance of physical links between pericentromeric regions of homologous chromosomes for their bipolar orientation during the first meiotic division is discussed. The pericentromeric chiasmata between homologs or (in the absence of the latter) chromocentric links between nonhomologs, which are preserved until prometaphase, compensate for the disturbed binding between homologous pericentromeric regions in both structural or locus mutants. When the links between nonhomologs are involved, interchromosomal effects on chromosome disjunction and nonhomologous pairing were revealed by the genetic methods. An explanation suggested for genetic events observed during Drosophilameiosis conforms with the original, cytogenetically proved model of the orderly two-ring chromocenter formation and reorganization.  相似文献   

2.
P. Chua  S. Jinks-Robertson 《Genetics》1991,129(2):359-369
It has long been assumed that chromatid segregation following mitotic crossing over in yeast is random, with the recombinant chromatids segregating to opposite poles of the cell (x-segregation) or to the same pole of the cell (z-segregation) with equal frequency. X-segregation events can be readily identified because heterozygous markers distal to the point of the exchange are reduced to homozygosity. Z-segregation events yield daughter cells which are identical phenotypically to nonrecombinant cells and thus can only be identified by the altered linkage relationships of genetic markers on opposite sides of the exchange. We have systematically examined the segregation patterns of chromatids with a spontaneous mitotic exchange in the CEN5-CAN1 interval on chromosome V. We find that the number of x-segregation events is equal to the number of z-segregations, thus demonstrating that chromatid segregation is indeed random. In addition, we have found that at least 5% of the cells selected for a recombination event on chromosome V are trisomic for this chromosome, indicating a strong association between mitotic recombination and chromosome nondisjunction.  相似文献   

3.
Meiotic Recombination on Artificial Chromosomes in Yeast   总被引:5,自引:0,他引:5       下载免费PDF全文
We have examined the meiotic recombination characteristics of artificial chromosomes in Saccharomyces cerevisiae. Our experiments were carried out using minichromosome derivatives of yeast chromosome III and yeast artificial chromosomes composed primarily of bacteriophage lambda DNA. Tetrad analysis revealed that the artificial chromosomes exhibit very low levels of meiotic recombination. However, when a 12.5-kbp fragment from yeast chromosome VIII was inserted into the right arm of the artificial chromosome, recombination within that arm mimicked the recombination characteristics of the fragment in its natural context including the ability of crossovers to ensure meiotic disjunction. Both crossing over and gene conversion (within the ARG4 gene contained within the fragment) were measured in the experiments. Similarly, a 55-kbp region from chromosome III carried on a minichromosome showed crossover behavior indistinguishable from that seen when it is carried on chromosome III. We discuss the notion that, in yeast, meiotic recombination behavior is determined locally by small chromosomal regions that function free of the influence of the chromosome as a whole.  相似文献   

4.
5.
《Current biology : CB》2020,30(7):1329-1338.e7
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   

6.
One of the key differences between mitosis and meiosis is the necessity for exchange between homologous chromosomes. Crossing-over between homologous chromosomes is essential for proper meiotic chromosome segregation in most organisms, serving the purpose of linking chromosomes to their homologous partners until they segregate from one another at anaphase I. In several organisms it has been shown that occasional pairs of chromosomes that have failed to experience exchange segregate with reduced fidelity compared to exchange chromosomes, but do not segregate randomly. Such observations support the notion that there are mechanisms, beyond exchange, that contribute to meiotic segregation fidelity. Recent findings indicate that active centromere pairing is important for proper kinetochore orientation and consequently, segregation of non-exchange chromosomes. Here we discuss the implications of these findings for the behavior of meiotic chromosomes.  相似文献   

7.
8.
Genetic and biochemical strategies have been used to identify Schizosaccharomyces pombe proteins with roles in centromere function. One protein, identified by both approaches, shows significant homology to the human centromere DNA-binding protein, CENP-B, and is identical to Abp1p (autonomously replicating sequence-binding protein 1) (Murakami, Y., J.A. Huberman, and J. Hurwitz. 1996. Proc. Natl. Acad. Sci. USA. 93:502–507). Abp1p binds in vitro specifically to at least three sites in centromeric central core DNA of S. pombe chromosome II (cc2). Overexpression of abp1 affects mitotic chromosome stability in S. pombe. Although inactivation of the abp1 gene is not lethal, the abp1 null strain displays marked mitotic chromosome instability and a pronounced meiotic defect. The identification of a CENP-B–related centromere DNA-binding protein in S. pombe strongly supports the hypothesis that fission yeast centromeres are structurally and functionally related to the centromeres of higher eukaryotes.  相似文献   

9.
10.
Chromosome Structure and Crossing over   总被引:6,自引:1,他引:5  
Charles H. Uhl 《Genetics》1965,51(2):191-207
  相似文献   

11.
Jules O''Rear  Jasper Rine 《Genetics》1986,113(3):517-529
In Saccharomyces cerevisiae, a reciprocal translocation between chromosome II and a linear plasmid carrying a centromere (CEN6) has split chromosome II into two fragments: one, approximately 530 kilobase pairs (kbp) in size, has the left arm and part of the right arm of chromosome II; the other, a telocentric fragment approximately 350 kbp in size, has CEN6 and the rest of the right arm of chromosome II. A cross of this yeast strain with a strain containing a complete chromosome II exhibits a high frequency of precocious centromere separation (separation of sister chromatids during meiosis I) of the telocentric fragment. Precocious centromere separation is not due to the position of the centromere per se, since diploids that are homozygous for both fragments of chromosome II segregate the telocentric fragment with normal meiotic behavior. The precocious centromere separation described here differs from previously described examples in that pairing and synapsis of this telocentric chromosome seem to be normal. One model of how centromeres function in meiosis is that replication of the centromere is delayed until the second meiotic division. Data presented in this paper indicate that replication of the centromere is complete before the first meiotic division. The precocious separation of the centromere described here may be due to improper synapsis of sequences flanking the centromere.  相似文献   

12.
Spo11-mediated DNA double-strand breaks (DSBs) that initiate meiotic recombination are temporally and spatially controlled. The meiotic cohesin Rec8 has been implicated in regulating DSB formation, but little is known about the features of their interplay. To elucidate this point, we investigated the genome-wide localization of Spo11 in budding yeast during early meiosis by chromatin immunoprecipitation using high-density tiling arrays. We found that Spo11 is dynamically localized to meiotic chromosomes. Spo11 initially accumulated around centromeres and thereafter localized to arm regions as premeiotic S phase proceeded. During this stage, a substantial proportion of Spo11 bound to Rec8 binding sites. Eventually, some of Spo11 further bound to both DSB and Rec8 sites. We also showed that such a change in a distribution of Spo11 is affected by hydroxyurea treatment. Interestingly, deletion of REC8 influences the localization of Spo11 to centromeres and in some of the intervals of the chromosomal arms. Thus, we observed a lack of DSB formation in a region-specific manner. These observations suggest that Rec8 would prearrange the distribution of Spo11 along chromosomes and will provide clues to understanding temporal and spatial regulation of DSB formation.  相似文献   

13.
Somatic Crossing over and Segregation in Drosophila Melanogaster   总被引:26,自引:0,他引:26  
Stern C 《Genetics》1936,21(6):625-730
  相似文献   

14.
15.
A. M. Villeneuve 《Genetics》1994,136(3):887-902
This study reports the characterization of a cis-acting locus on the Caenorhabditis elegans X chromosome that is crucial for promoting normal levels of crossing over specifically between the X homologs and for ensuring their proper disjunction at meiosis I. The function of this locus is disrupted by the mutation me8, which maps to the extreme left end of the X chromosome within the region previously implicated by studies of X;A translocations and X duplications to contain a meiotic pairing site. Hermaphrodites homozygous for a deletion of the locus (Df/Df) or heterozygous for a deletion and the me8 mutation (me8/Df) exhibit extremely high levels of X chromosome nondisjunction at the reductional division; this is correlated with a sharp decrease in crossing over between the X homologs as evidenced both by reductions in genetic map distances and by the presence of achiasmate chromosomes in cytological preparations of oocyte nuclei. Duplications of the wild-type region that are unlinked to the X chromosome cannot complement the recombination and disjunction defects in trans, indicating that this region must be present in cis to the X chromosome to ensure normal levels of crossing over and proper homolog disjunction. me8 homozygotes exhibit an altered distribution of crossovers along the X chromosome that suggests a defect in processivity along the X chromosome of an event that initiates at the chromosome end. Models are discussed in which the cis-acting locus deleted by the Dfs functions as a meiotic pairing center that recruits trans-acting factors onto the chromosomes to nucleate assembly of a crossover-competent complex between the X homologs. This pairing center might function in the process of homolog recognition, or in the initiation of homologous synapsis.  相似文献   

16.
A period of pairing between nonhomologous centromeres occurs early in meiosis in a diverse collection of organisms. This early, homology-independent, centromere pairing, referred to as centromere coupling in budding yeast, gives way to an alignment of homologous centromeres as homologues synapse later in meiotic prophase. The regulation of centromere coupling and its underlying mechanism have not been elucidated. In budding yeast, the protein Zip1p is a major component of the central element of the synaptonemal complex in pachytene of meiosis, and earlier, is essential for centromere coupling. The experiments reported here demonstrate that centromere coupling is mechanistically distinct from synaptonemal complex assembly. Zip2p, Zip3p, and Red1p are all required for the assembly of Zip1 into the synaptonemal complex but are dispensable for centromere coupling. However, the meiotic cohesin Rec8p is required for centromere coupling. Loading of meiotic cohesins to centromeres and cohesin-associated regions is required for the association of Zip1 with these sites, and the association of Zip1 with the centromeres then promotes coupling. These findings reveal a mechanism that promotes associations between centromeres before the assembly of the synaptonemal complex, and they demonstrate that chromosomes are preloaded with Zip1p in a manner that may promote synapsis.  相似文献   

17.
18.
The Yeast Red1 Protein Localizes to the Cores of Meiotic Chromosomes   总被引:26,自引:2,他引:24       下载免费PDF全文
Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed axial elements present in a zip1 mutant, suggesting that Red1 is a component of the lateral elements of mature SCs. Anti-Red1 staining is confined to the cores of meiotic chromosomes and is not associated with the loops of chromatin that lie outside the SC. Analysis of the spo11 mutant demonstrates that Red1 localization does not depend upon meiotic recombination. The localization of Red1 has been compared with two other meiosisspecific components of chromosomes, Hop1 and Zip1; Zip1 serves as a marker for synapsed chromosomes. Double labeling of wild-type meiotic chromosomes with anti-Zip1 and anti-Red1 antibodies demonstrates that Red1 localizes to chromosomes both before and during pachytene. Double labeling with anti-Hop1and anti-Red1 antibodies reveals that Hop1 protein localizes only in areas that also contain Red1, and studies of Hop1 localization in a red1 null mutant demonstrate that Hop1 localization depends on Red1 function. These observations are consistent with previous genetic studies suggesting that Red1 and Hop1 directly interact. There is little or no Hop1 protein on pachytene chromosomes or in synapsed chromosomal regions.  相似文献   

19.
20.
Interference in Genetic Crossing over and Chromosome Mapping   总被引:10,自引:5,他引:5       下载免费PDF全文
Stam P 《Genetics》1979,92(2):573-594
This paper proposes a general model for interference in genetic crossing over. The model assumes serial occurrence of chiasmata, visualized as a renewal process along the paired (or pairing) chromosomes. This process is described as an underlying Poisson process in which the 1st, n + 1th, 2n + 1th, etc., events are to be interpreted as realized chiasmata. Chromatid interference is described in terms of the probabilities that two successive chiasmata involve two, three or four different chromatids. Several characteristics of this model, e.g., the cytological and genetic mapping function and the density of chiasmata along the chromosomes, are discussed. Some aspects of other interference models are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号