首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Amphotericin B is a polyene macrolide antibiotic which interacts specifically with steroids in mammalian cell membranes. Amphotericin B-resistant (AMBr) lines of stable phenotype have been isolated from cultured Chinese hamster (V79) cells. Three AMBr clones (AMBr-1, -2 and -3) isolated independently after treatment with nitrosoguanidine were resistant to ≥150 μg/ml of the antibiotic, while DNA synthesis as well as the colony-forming ability of the parental V79 cells was blocked by >80% of control in the presence of 20–50 μg/ml amphotericin B. The AMBr cell line also exhibited increased resistance to other polyene macrolide antibiotics such as nystatin and pentamycin. Other agents, however, such as cytosine arabinoside or ricin, blocked DNA synthesis in AMBr cells to the same extent as in V79 cells. The amphotericin B resistance phenotype was stably retained even after AMBr cells were cultured in the absence of the drug for over 200 generations. The content of free cholesterol or its esters was significantly decreased in all three resistant clones. Furthermore, cholesterol synthesis from acetate as well as mevalonate was partly defective in AMBr cells, compared with that in V79 cells.  相似文献   

3.
A replica plating method was used for the isolation of temperature-sensitive (ts) mutants after treatment of Chinese hamster cells with ethyl methanesulfonate (EMS). No significant increase in ts mutants was found after this treatment. The limitations and advantages of the replicating procedure to detect such differences, as well as an alternative method, are discussed.Mutants isolated were classified into two general groups—density-dependent and clear-cut—as measured by survival at low and high cell densities at the restrictive temperature. The density-dependent mutants may be truly “leaky”, losing a metabolite to the medium at an excessive rate at the restrictive temperature. On the other hand, the one clear-cut mutant analyzed extensively dies at a rate determined by its ability to utilize one or more components from the medium. It shows an inverse density relationship in rate of death, as inferred from rates of macromolecular synthesis, as opposed to its growth rate at the permissive temperature.  相似文献   

4.
Cultured Chinese hamster ovary (CHO) cells possess an insulin-sensitive facilitated diffusion system for glucose transport. Mutant clones of CHO cells defective in glucose transport were obtained by repeating the selection procedure, which involved mutagenesis with ethyl methanesulfonate, radiation suicide with tritiated 2-deoxy-D-glucose, the polyester replica technique and in situ autoradiographic assaying for glucose accumulation. On the first selection, we obtained mutants exhibiting about half the glucose uptake activity of parental CHO-K1 cells and half the amount of a glucose transporter, the amount of which was determined by immunoblotting with an antibody to the human erythrocyte glucose transporter. The second selection, starting from one of the mutants obtained in the first-step selection, yielded a strain, GTS-31, in which both glucose uptake activity and the quantity of the glucose transporter were 10-20% of the levels in CHO-K1 cells, whereas the responsiveness of glucose transport to insulin, and the activities of leucine uptake and several glycolytic enzymes remained unchanged. GTS-31 cells grew slower than CHO-K1 cells at both 33 and 40 degrees C, and in a medium containing a low concentration of glucose (0.1 mM), the mutant cells lost the ability to form colonies. All the three spontaneous GTS-31 cell revertants, which were isolated by growing the mutant cells in medium containing 0.1 mM glucose, exhibited about half the glucose uptake activity and about half the amount of glucose transporter, as compared to in CHO-K1 cells, these characteristics being similar to those of the first-step mutant. These results indicate that the decrease in glucose uptake activity in strain GTS-31 is due to a mutation which induces a reduction in the amount of the glucose transporter, providing genetic evidence that the glucose transporter functions as a major route for glucose entry into CHO-K1 cells.  相似文献   

5.
P J Wejksnora 《Gene》1985,33(3):285-292
We have examined the ribosomal RNA (rRNA) genes of the Chinese hamster ovary (CHO) cell line. A partial EcoRI library of genomic CHO DNA was prepared using lambda Charon-4A. We isolated two recombinants containing the region transcribed as 45S pre-rRNA and 13 kb of external spacer flanking 5' and 3' to the transcribed region. These sequences show restriction site homology with the vast majority of the genomic sequences complementary to rRNA. In addition to this form of rDNA, Southern blot analysis of EcoRI-cut CHO genomic DNA reveals numerous minor fragments ranging from 2 to 19 kb which are complementary to 18S rRNA. We isolated one clone which contains the 18S rRNA gene and sequences 5' which appear to contain length heterogeneity within the non-transcribed spacer region. We have nine additional cloned EcoRI fragments in which the homology with 18S rRNA is limited to a 0.9-kb EcoRI-HindIII fragment. This EcoRI-HindIII fragment is present in each of the cloned EcoRI fragments, and is flanked on both sides by apparently nonribosomal sequences which bear little restriction site homology with each other or the major cloned rDNA repeat.  相似文献   

6.
7.
We made use of autoradiographic screening to isolate two Chinese hamster ovary (CHO) cell mutants deficient in peroxisomal dihydroxyacetonephosphate acyltransferase, a key enzyme for the biosynthesis of ether glycerolipids such as plasmalogens. Morphological analysis revealed no evidence of peroxisome in these mutants. Catalase was as active as in the normal cells but was not sedimentable. Pulse-chase radiolabeling experiments and cell-free translation of RNA demonstrated that acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation system, was synthesized as the 75-kD form but was not converted to 53- and 22-kD mature components that were present in the wild-type CHO cells; rather, degradation was apparent. Peroxisomal thiolase was synthesized as in normal cells but remained as a larger, 44-kD precursor, whereas maturation to the 41-kD enzyme was detected in the wild-type cells. The peroxisomal 70-kD integral membrane protein was also equally synthesized, as in the wild-type cells, and was not degraded. These results suggest that assembly of the peroxisomes is defective in the mutants, whereas the synthesis of peroxisomal proteins appears to be normal. Cell-fusion studies revealed that the two mutants are recessive to the wild-type CHO cells and belong to different complementation groups. Thus, these mutants presumably contain different lesions in gene(s) encoding factor(s) required for peroxisome assembly.  相似文献   

8.
Incidence of colon cancer has increased rapidly in China. Although many colon cancer cell lines have been established previously, most of them were derived from patients from western countries. Epidemiological, clinical, cytogenetic, and molecular biological studies showed that there are considerable differences between Chinese and western countries colon cancer patients. Therefore, establishment of novel colon cancer cell line from Chinese is useful for studying the racial difference of this disease and can be important for studying the pathogenesis of colon cancer in China. In our laboratory, two novel continuous human colon cancer cell lines, SHT-1 and SHH-1, have been established in vitro from Chinese patients, and both cell lines have been passaged for 4 yr, and they have been continuously subcultured with more than 800 population doubling and without signs of senescence. Both cell lines were obtained from primary tumor tissues during colon cancer surgery. Cells grew rapidly with a doubling time of 36–39 h and a plating efficiency of 26–28%. These cells exhibited an epithelial morphology and expressed cytokeratin. Tumor developed in severe combined immunodeficient (SCID) mice 4–6 wk after inoculated subcutaneously with the cultured cancer cells. Karyotypic analysis and comparative genomic hybridization (CGH) analysis in SHT-1 cells revealed a hypertriploid modal number of 76 with numerous numerical and structural abnormalities previously linked to colon cancer. In another cell line (SHH-1), CGH analysis revealed that −1p13 was the only cytogenetic anomaly.  相似文献   

9.
Clones resistant to the lectins phytohemagglutinin (PHA), wheat germ agglutinin (WGA), the agglutinin(s) from Lens culinaris (LCA), and ricin (RIC) have been selected from parental auxotrophic Chinese hamster ovary (CHO) cells. The sensitivity to other lectins of these cells and of CHO cells resistant to concanavalin A (ConA) has been determined, and their activity of UDP-N-acetyl-glucosamine glycoprotein N-acetyl-glucosaminyltransferase (GlcNAc-T) has been measured. At least 8 different phenotypes have been identified on the basis of this analysis, and complementation between 2 of them demonstrated.  相似文献   

10.
Chinese hamster ovary lines with two mutations, one causing accumulation of Man5GlcNAc2-P-P-dolichol and a second resulting in defective N-acetylglucosaminyltransferase I activity, synthesize asparagine-linked glycans with the structure Man3GlcNAc2. As a result, the asparagine-linked glycans produced by these lines are smaller and less heterogeneous than those produced by other currently available animal cell lines.  相似文献   

11.
12.
Variant clones of Chinese hamster ovary (CHO) cells were selected for reduced adhesion to serum-coated tissue culture plates. These clones also displayed reduced adhesion to substrata composed of collagen layers coated with bovine serum or with fibronectin (cold-insoluble globulin). Wild-type (WT) and adhesion variant (ADv) cells grew at comparable rates in suspension culture, but the adhesion variants could not be grown in monolayer culture because of their inability to attach to the substratum. The adhesion deficit in these cells was not corrected by raising the concentration of divalent cations or of serum to levels 10-fold greater than those normally utilized in cell culture. However, both WT and ADv clones could adhere, spread, and attain a normal CHO morphology on substrata coated with concanavalin A or poly-L- lysine. In addition, the adhesion variants could attach to substrata coated with "footpad" material (substratum-attached material) derived from monolayers of human diploid fibroblasts or WT CHO cells. These observations suggest that the variant clones may have a cell surface defect that prevents them from utilizing exogeneous fibronectin as an adhesion-promoting ligand; however the variants seem to have normal cytoskeletal and metabolic capacities that allow them to attach and spread on substrata coated with alternative ligands. These variants should be extremely useful in studying the molecular basis of cell adhesion.  相似文献   

13.
Colchicine changes plant cell shape by disrupting cortical microtubules. This change in cell shape involves the loss of cell rigidity and, subsequently, an increase in cell volume. Dimethylsulfoxide prevents the colchicine-stimulated cell enlargement but cannot maintain the cell shape. We have isolated colchicine-resistant cell lines, col-4 and col-3, which can maintain their cell shape in colchicine at 10−4 and 10−3 M , respectively. Both col-4 and col-3 accumulate a low level of tubulins when grown in colchicine while the wild-type cells do not. Hence the ability to accumulate tubulins correlates with the ability to maintain cell shape. The mechanism of colchicine-resistance of col-4 is not clear but may be associated with the expression of 5 proteins with molecular masses of 64, 45, 29, 28, and 26 kDa. Col-3 cells were isolated from col-4 and presumably shared this mechanism of resistance since they also express these 5 proteins. However, col-3 cells have an additional defect resulting in reduced colchicine uptake.  相似文献   

14.
Aminopterin-resistant cell lines of maize were isolated by two different procedures of callus selection and by plating suspension cultures on drugcontaining medium after mutagen treatment. Efficiencies of different methods of variant selection were compared. Four aminopterin-resistant cell lines were shown to be 10–40 times more resistant than the parental cell line, and they were also resistant to another folate analog, methotrexate. The results suggest that alterations in at least three different cell properties could be responsible for resistance; 1) increased dihydrofolate reductase activity, 2) altered aminopterin sensitivity of dihydrofolate reductase, and 3) reduced drug uptake. One of the resistant cell lines showed more than one alteration, but its resistance proved to be unstable. The results suggest that stable changes which may or may not be of genetic origin and also unstable physiological changes or a combination of both could lead to aminopterin resistance in maize cell cultures.Abbreviations AMPT aminopterin - MTX methotrexate - DHFR dihydrofolate reductase - MNNG N-methyl-N-nitro-N-nitrosoguanidine - EMS ethylmethane sulfonate Research supported by the College of Agriculture and Life Sciences and by the Graduate School, University of Wisconsin Madison, Wis, USA  相似文献   

15.
The work from our laboratory on complex I-deficient Chinese hamster cell mutants is reviewed. Several complementation groups with a complete defect have been identified. Three of these are due to X-linked mutations, and the mutated genes for two have been identified. We describe null mutants in the genes for the subunits MWFE (gene: NDUFA1) and ESSS. They represent small integral membrane proteins localized in the Ialpha (Igamma) and Ibeta subcomplexes, respectively [J. Hirst, J. Carroll, I.M. Fearnley, R.J. Shannon, J.E. Walker. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604 (7-10-2003) 135-150.]. Both are absolutely essential for assembly and activity of complex I. Epitope-tagged versions of these proteins can be expressed from a poly-cistronic vector to complement the mutants, or to be co-expressed with the endogenous proteins in other hamster cell lines (mutant or wild type), or human cells. Structure-function analyses can be performed with proteins altered by site-directed mutagenesis. A cell line has been constructed in which the MWFE subunit is conditionally expressed, opening a window on the kinetics of assembly of complex I. Its targeting, import into mitochondria, and orientation in the inner membrane have also been investigated. The two proteins have recently been shown to be the targets for a cAMP-dependent kinase [R. Chen, I.M. Fearnley, S.Y. Peak_Chew, J.E. Walker. The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. xx (2004) xx-xx.]. The epitope-tagged proteins can be cross-linked with other complex I subunits.  相似文献   

16.
In contrast with the CHO-Kl Chinese hamster cell line, the V79 cell line was found not to grow on the sugar mannose, and in fact to be inhibited and killed. Study showed no differences between the lines with regard to mannose transport, mannose specific energy metabolism, or effect of mannose on energy or nucleic acid metabolism. The V79 line lacked an α-mannosidase which the CHO-Kl line possessed.  相似文献   

17.
We have previously reported the isolation of Chinese hamster ovary cell mutants deficient in acylcoenzyme A/cholesterol acyltransferase (ACAT) activity (Cadigan, K. M., J. G. Heider, and T. Y. Chang. 1988, J. Biol. Chem. 263:274-282). We now describe a procedure for isolating cells from these mutants that have regained the ability to synthesize cholesterol esters. The protocol uses the fluorescent stain Nile red, which is specific for neutral lipids such as cholesterol ester. After ACAT mutant populations were subjected to chemical mutagenesis or transfected with human fibroblast whole genomic DNA, two revertants and one primary transformant were isolated by virtue of their higher fluorescent intensities using flow cytofluorimetry. Both the revertants and transformant have regained large amounts of intracellular cholesterol ester and ACAT activity. However, heat inactivation experiments revealed that the enzyme activity of the transformant had heat stability properties identical to that of human fibroblasts, while the ACAT activities of the revertants were similar to that of other Chinese hamster ovary cell lines. These results suggest that the molecular lesion in the ACAT mutants resides in the structural gene for the enzyme, and the transformant has corrected this defect by acquiring and stably expressing a human gene encoding the ACAT polypeptide. Secondary transformants were isolated by transfection of ACAT mutant cells with primary transformant genomic DNA. Genomic Southern analysis of the secondary transformants using a probe specific for human DNA revealed several distinct restriction fragments common to all the transformants which most likely comprise part or all of the human ACAT gene. The cell lines described here should facilitate the cloning of the gene encoding the human ACAT enzyme.  相似文献   

18.
19.
《The Journal of cell biology》1989,109(6):3157-3167
Chinese hamster ovary cell populations were enriched for cells displaying low surface expression of the 140-kD integrin fibronectin receptor (FnR) by means of fluorescence-activated cell sorting using monoclonal anti-FnR antibodies. Selected cells were cloned by limiting dilution, and the resulting clones were screened for low cell surface FnR expression by ELISA. Two multiply sorted populations gave rise to variant clones possessing approximately 20 or 2% FnR expression, respectively, compared with wild-type cells. Growth rates of the "20%" and "2%" clones on serum-coated plastic dishes were similar to that of wild-type cells. Variant cells expressing 20% FnR could attach and spread on substrata coated with purified fibronectin, although somewhat more slowly than wild-type cells, while cells expressing 2% FnR could not attach or spread. Cells from all variant clones attached normally to vitronectin substrata, but some of the 2% clones displayed altered morphology on this type of substratum. Motility assays in blind well chambers showed a correlation of movement with level of expression of FnR. The number of cells migrating in response to fibronectin was greatly reduced compared with wild-type cells for the 20% FnR variant clones, while variant clones with 2% FnR showed virtually no migratory activity. Surface labeling with 125I and immunoaffinity purification of FnR showed reduced levels of intact FnR on the plasma membranes of variants with 20% FnR, while none was detected in variants expressing 2% FnR. Nevertheless, beta subunits were detected on the surfaces of all variant clones. Immunoblots of cell lysates from wild-type cells and from both types of variant clones showed substantial amounts of FnR beta chain as well as enhanced amounts of a pre-beta moiety in the variants. alpha chain was markedly reduced in the 20% variants and essentially absent in the 2% variants, indicating that failure to assemble intact FnR in these variants was due to deficiencies of alpha chain production. Dot blots of total mRNA from a representative clone expressing 20% FnR showed reduced levels of material hybridizing to an 0.97-kb hamster FnR alpha chain cDNA probe as compared with wild type, while mRNA from a representative clone expressing 2% FnR had no detectable hybridizable RNA; this seems to agree well with the results obtained by immunoblotting. Thus, the defect in the variant clones seems to be due to reduced levels of alpha chain mRNA leading to a deficit of mature FnR and consequent alterations in cell adhesion and motility on fibronectin substrata.  相似文献   

20.
We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号