首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The region of Saccharomyces cerevisiae chromosome III centromere-distal to the PGK gene is the site of frequent chromosome polymorphisms. We have sequenced this region from fragments of chromosome III isolated from three different yeast strains, GRF88, CN31C and CF4-16B. The sequence analysis demonstrates that these polymorphisms are associated with the presence of Ty and delta elements and defines a region of the chromosome which is a hot-spot for transposition events (the RAHS). The three strains can be arranged into a logical evolutionary series in which successive transposition and recombination events insert Ty elements and fuse them with consequent deletions of chromosome and of transposon sequences. The influence of such events on yeast genome evolution is discussed.  相似文献   

3.
Jordan IK  McDonald JF 《Genetics》1999,151(4):1341-1351
The Saccharomyces cerevisiae genome contains five families of long terminal repeat (LTR) retrotransposons, Ty1-Ty5. The sequencing of the S. cerevisiae genome provides an unprecedented opportunity to examine the patterns of molecular variation existing among the entire genomic complement of Ty retrotransposons. We report the results of an analysis of the nucleotide and amino acid sequence variation within and between the five Ty element families of the S. cerevisiae genome. Our results indicate that individual Ty element families tend to be highly homogenous in both sequence and size variation. Comparisons of within-element 5' and 3' LTR sequences indicate that the vast majority of Ty elements have recently transposed. Furthermore, intrafamily Ty sequence comparisons reveal the action of negative selection on Ty element coding sequences. These results taken together suggest that there is a high level of genomic turnover of S. cerevisiae Ty elements, which is presumably in response to selective pressure to escape host-mediated repression and elimination mechanisms.  相似文献   

4.
Saccharomyces cerevisiae Ty elements are transposons closely related to retroviruses. The DNA sequence of a functional Ty element (TyH3) is presented. The long terminal repeat sequences are different, suggesting that TyH3 is a recombinant Ty element. A chromosomal Ty element near the LYS2 gene, Ty173, was found to be nonfunctional, even though it has no detectable insertions or deletions. The defect in Ty173 transposition is caused by a missense mutation giving rise to a Leu-to-Ile substitution in the TYB (pol) open reading frame. Several chromosomal Ty elements carry this lesion in their DNA, indicating that nonfunctional Ty elements are common in the yeast genome.  相似文献   

5.
6.
How mobile genetic elements molded eukaryotic genomes is a key evolutionary question that gained wider popularity when mobile DNA sequences were shown to comprise about half of the human genome. Although Saccharomyces cerevisiae does not suffer such "genome obesity", five families of LTR-retrotransposons, Ty1, Ty2, Ty3, Ty4, and Ty5 elements, comprise about 3% of its genome. The availability of complete genome sequences from several Saccharomyces species, including members of the closely related sensu stricto group, present new opportunities for analyzing molecular mechanisms for chromosome evolution, speciation, and reproductive isolation. In this review I present key experiments from both the pre- and current genomic sequencing eras suggesting how Ty elements mediate genome evolution.  相似文献   

7.
We have determined the nucleotide sequence of a class II yeast transposon (Ty 1-17) which is found just centromere-distal to the LEU2 structural gene on chromosome III of Saccharomyces cerevisiae. The complete element is 5961 bp long and is bounded by two identical, directly repeated, delta sequences of 332 bp each. The sequence organization indicates that Ty 1-17 is a retrotransposon, like the class I elements characterized previously. It contains two long open reading-frames, TyA (439 amino acids) and TyB (1349 amino acids). In this paper, the sequences of the two classes of yeast transposon are compared with one another and with analogous elements, such as retroviral proviruses, cauliflower mosaic virus and copia sequences. Features of the Ty 1-17 sequence which may be important to its mechanism of transposition and its genetic action are discussed.  相似文献   

8.
9.
Evidence for transposition of dispersed repetitive DNA families in yeast.   总被引:149,自引:0,他引:149  
J R Cameron  E Y Loh  R W Davis 《Cell》1979,16(4):739-751
Dispersed repetitive DNA sequences from yeast (Saccharomyces cerevisiae) nuclear DNA have been isolated as molecular hybrids in lambdagt. Related S. cerevisiae strains show marked alterations in the size of the restriction fragments containing these repetitive DNAs. "Ty1" is one such family of repeated sequences in yeast and consists of a 5.6 kilobase (kb) sequence including a noninverted 0.25 kb sequence of another repetitious family, "delta", on each end. There are about 35 copies of Ty1 and at least 100 copies of delta (not always associated with Ty1) in the haploid genome. A few Ty1 elements are tandem and/or circular, but most are disperse and show (along with delta) some sequence divergence between repeat units. Sequence alterations involving Ty1 elements have been found during the continual propagation of a single yeast clone over the course of a month. One region with a large number of delta sequences (SUP4) also shows a high frequency of sequence alterations when different strains are compared. One of the differences between two such strains involves the presence or absence of a Ty1 element. The novel joint is at one inverted pair of delta sequences.  相似文献   

10.
11.
12.
The retrotransposon Ty1 of Saccharomyces cerevisiae inserts preferentially into intergenic regions in the vicinity of RNA polymerase III-transcribed genes. It has been suggested that this preference has evolved to minimize the deleterious effects of element transposition on the host genome, and thus to favor their evolutionary survival. This presupposes that such insertions have no selective effect. However, there has been no direct test of this hypothesis. Here we construct a series of strains containing single Ty1 insertions in the vicinity of tRNA genes, or in the rDNA cluster on chromosome XII, which are otherwise isogenic to strain 337, containing zero Ty1 elements. Competition experiments between 337 and the strains containing single Ty1 insertions revealed that in all cases, the Ty1 insertions have no selective effect in rich medium. These results are thus consistent with the hypothesis that the insertion site preference of Ty1 elements has evolved to minimize the deleterious effects of transposition on the host genome.  相似文献   

13.
S Zou  J M Kim    D F Voytas 《Nucleic acids research》1996,24(23):4825-4831
Retrotransposons are ubiquitous components of eukaryotic genomes suggesting that they have played a significant role in genome organization. In Saccharomyces cerevisiae, eight of 10 endogenous insertions of the Ty5 retrotransposon family are located within 15 kb of chromosome ends, and two are located near the subtelomeric HMR locus. This genomic organization is the consequence of targeted transposition, as 14 of 15 newly transposed Ty5 elements map to telomeric regions on 10 different chromosomes. Nine of these insertions are within 0.8 kb and three are within 1.5 kb of the autonomously replicating consensus sequence in the subtelomeric X repeat. This suggests that the X repeat plays an important role in directing Ty5 integration. Analysis of endogenous insertions from S.cerevisiae and its close relative S.paradoxus revealed that only one of 12 insertions has target site duplications, indicating that recombination occurs between elements. This is further supported by the observation that Ty5 insertions mark boundaries of sequence duplications and rearrangements in these species. These data suggest that transposable elements like Ty5 can shape the organization of chromosome ends through both transposition and recombination.  相似文献   

14.
Retrotransposons are a widely distributed group of eukaryotic mobile genetic elements that transpose through an RNA intermediate. The element Ty (Transposon yeast), found in the yeast Saccharomyces cerevisiae, is a model system for the study of retrotransposons because of the experimental tools that exist to manipulate and detect transposition. Ty transposition can be elevated to levels exceeding one transposition event per cell when an element is expressed from an inducible yeast promoter. In addition, individual genomic Ty elements can be tagged with a retrotransposition indicator gene that allows transposition events occurring at a rate of 10(-5) to 10(-7) per element per cell division to be detected phenotypically. These systems are being used to elucidate the mechanism of Ty transposition and clarify how Ty transposition is controlled.  相似文献   

15.
16.
The recent completion of the sequencing of the Saccharomyces cerevisiae genome provides a unique opportunity to analyze the evolutionary relationships existing among the entire complement of retrotransposons residing within a single genome. In this article we report the results of such an analysis of two closely related families of yeast long terminal repeat (LTR) retrotransposons, Ty1 and Ty2. In our study, we analyzed the molecular variation existing among the 32 Ty1 and 13 Ty2 elements present within the S. cerevisiae genome recently sequenced within the context of the yeast genome project. Our results indicate that while the Ty1 family is most likely ancestral to Ty2 elements, both families of elements are relatively recent components of the S. cerevisiae genome. Our results also indicate that both families of elements have been subject to purifying selection within their protein coding regions. Finally, and perhaps most interestingly, our results indicate that a relatively recent recombination event has occurred between Ty2 and a subclass of Ty1 elements involving the LTR regulatory region. We discuss the possible biological significance of these findings and, in particular, how they contribute to a better overall understanding of LTR retrotransposon evolution. Received: 30 September 1997 / Accepted: 3 February 1998  相似文献   

17.
Macroautophagy (autophagy) is a bulk degradation system for cytoplasmic components and is ubiquitously found in eukaryotic cells. Autophagy is induced under starvation conditions and plays a cytoprotective role by degrading unwanted cytoplasmic materials. The Ty1 transposon, a member of the Ty1/copia superfamily, is the most abundant retrotransposon in the yeast Saccharomyces cerevisiae and acts to introduce mutations in the host genome via Ty1 virus-like particles (VLPs) localized in the cytoplasm. Here we show that selective autophagy downregulates Ty1 transposition by eliminating Ty1 VLPs from the cytoplasm under nutrient-limited conditions. Ty1 VLPs are targeted to autophagosomes by an interaction with Atg19. We propose that selective autophagy safeguards genome integrity against excessive insertional mutagenesis caused during nutrient starvation by transposable elements in eukaryotic cells.  相似文献   

18.
Yeast (Saccharomyces cerevisiae) transposons (Ty elements) are excised from up to 20% of supercoiled plasmids during transformation of yeast cells. The excision occurs by homologous recombination across the direct terminal repeats (deltas) of the Ty element, leaving behind a single delta in the transforming plasmid. Only the initial transforming plasmid is susceptible to excision, and no high frequency excision is observed in plasmids that have become established in transformed cells or in plasmids that are resident in cells undergoing transformation. High frequency excision from plasmids during yeast transformation is not specific for Ty elements and can be observed with other segments of plasmid DNA bounded by direct repeats. The frequency of Ty excision from supercoiled plasmids is greatly reduced when the host yeast cells contain the rad52 mutation, a defect in double-strand DNA repair. When linear or ligated-linear plasmid DNAs containing a Ty element are used for transformation, few or no excision plasmids are found among the transformant colonies. These results suggest that when a yeast cell is transformed with a supercoiled plasmid, the plasmid DNA is highly susceptible to homologous recombination for a short period of time.  相似文献   

19.
Multimeric arrays of the yeast retrotransposon Ty.   总被引:8,自引:3,他引:5       下载免费PDF全文
We have identified a novel integrated form of the yeast retrotransposon Ty consisting of multiple elements joined into large arrays. These arrays were first identified among Ty-induced alpha-pheromone-resistant mutants of MATa cells of Saccharomyces cerevisiae which contain Ty insertions at HML alpha that result in the expression of that normally silent cassette. These insertions are multimeric arrays of both the induced genetically marked Ty element and unmarked Ty elements. Structural analysis of the mutations indicated that the arrays include tandem direct repeats of Ty elements separated by only a single long terminal repeat. The Ty-HML junction fragments of one mutant were cloned and shown to contain a 5-base-pair duplication of the target sequence that is characteristic of a Ty transpositional insertion. In addition, the arrays include rearranged Ty elements that do not have normal long terminal repeat junctions. We have also identified multimeric Ty insertions at other chromosomal sites and as insertions that allow expression of a promoterless his3 gene on a plasmid. The results suggest that Ty transposition includes an intermediate that can undergo recombination to produce multimers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号