首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SUMMARY In arthropods, such as Drosophila melanogaster, the leg gap genes homothorax (hth), extradenticle (exd), dachshund (dac), and Distal‐less (Dll) regionalize the legs in order to facilitate the subsequent segmentation of the legs. We have isolated homologs of all four leg gap genes from the onychophoran Euperipatoides kanangrensis and have studied their expression. We show that leg regionalization takes place in the legs of onychophorans even though they represent simple and nonsegmented appendages. This implies that leg regionalization evolved for a different function and was only later co‐opted for a role in leg segmentation. We also show that the leg gap gene patterns in onychophorans (especially of hth and exd) are similar to the patterns in crustaceans and insects, suggesting that this is the plesiomorphic state in arthropods. The reversed hth and exd patterns in chelicerates and myriapods are therefore an apomorphy for this group, the Myriochelata, lending support to the Myriochelata and Tetraconata clades in arthropod phylogeny.  相似文献   

2.
Beetle horns represent an evolutionary novelty exhibiting remarkable diversity above and below the species level. Here, we show that four typical appendage patterning genes, extradenticle (exd), homothorax (hth), dachshund (dac), and Distal-less (Dll) are expressed in the context of the development of sexually dimorphic thoracic horns in three Onthophagus species. At least two of these genes, Dll and hth, exhibited expression patterns consistent with a conservation of patterning function during horn development relative to their known roles in the development of insect legs. exd, hth, and dac expression patterns during horn development were largely invariable across species or sexes within species. In contrast, Dll expression was far more discrete and exhibited consistent differences between sexes and species. Most importantly, differences in location and domain size of Dll expression tightly correlated with the degree to which prepupal horn primordia were retained or resorbed before the final adult molt. Our results lend further support to the hypothesis that the origin of beetle horns relied, at least in part, on the redeployment of already existing developmental mechanisms, such as appendage patterning processes and that changes in the exact location and domain size of Dll expression may represent important modifier mechanisms that modulate horn expression in different species or sexes. If correct, this would imply that certain components of genetic basis of horn development may be able to diversify rapidly within lineages and largely independent of phylogenetic distance. We present a first model that integrates presently available data on the genetic regulation of horn development and diversity.  相似文献   

3.
Arthropod appendages are among the most diverse animal organs and have been adapted to a variety of functions. Due to this diversity, it can be difficult to recognize homologous parts in different appendage types and different species. Gene expression patterns of appendage development genes have been used to overcome this problem and to identify homologous limb portions across different species and their appendages. However, regarding the largest arthropod group, the hexapods, most of these studies focused on members of the winged insects (Pterygota), but primitively wingless groups like the springtails (Collembola) or silverfish and allies (Zygentoma) are underrepresented. We have studied the expression of a set of appendage patterning genes in the firebrat Thermobia domestica and the white springtail Folsomia candida. The expressions of Distal-less (Dll) and dachshund (dac) are generally similar to the patterns reported for pterygote insects. Modifications of gene regulation, for example, the lack of Dll expression in the palp of F. candida mouthparts, however, point to changes in gene function that can make the use of single genes and specific expression domains problematic for homology inference. Such hypotheses should therefore not rely on a small number of genes and should ideally also include information about gene function. The expression patterns of homothorax (hth) and extradenticle (exd) in both species are similar to the patterns of crustaceans and pterygote insects, but differ from those in chelicerates and myriapods. The proximal specificity of hth thus appears to trace from a common hexapod ancestor and also provides a link to the regulation of this gene in crustaceans.  相似文献   

4.
 Mandibles are feeding appendages functioning as ”jaws” in the arthropod groups in which they occur. Which part of this appendage is involved in food manipulation (limb tip versus limb base), has been used to suggest phylogenetic relationships among some of the major taxa of arthropods (myriapods, crustaceans, and insects). As a way to independently verify the conclusions drawn from previous morphological analyses, we have studied the expression pattern of the gene Distal-less (Dll), which specifies the distal part of appendages. Our results show, in contrast to the traditional view, that both insect and crustacean adult mandibles are gnathobasic, handling food with the basal portion of the appendage. Furthermore, as is evident by the reduction in the number of Dll-expressing cells in the later developmental stages, adult diplopod jaws are also gnathobasic. Thus, jaws of all mandibulates (myriapods, crustaceans, and insects) seem to have a similar gnathobasic structure. We have also found that Dll is expressed in the labra of all arthropod taxa examined, suggesting that this structure is of appendicular derivation. Additionally, the spinnerets and book lungs of spiders, long considered on other grounds to be modified appendages, express Dll, confirming this interpretation. This study shows that, in addition to their use in phylogenetic and population genetic studies, molecular markers can be very useful for inferring the origins of a particular morphological feature. Received: 12 January 1998 / Accepted: 23 March 1998  相似文献   

5.
Two unique spidroins are present in the silk of the Amazon mygalomorph spider — Avicularia juruensis (Theraphosidae), and for the first time the presence and expression of a major ampullate spidroin 2-like in Mygalomorphae are demonstrated. Molecular analysis showed the presence of (GA)n, poly-A and GPGXX motifs in the amino acid sequence of Spidroin 2, the last being a motif described so far only in MaSp2 and Flag spidroins. Phylogenetic analysis confirmed the previously known orthologous silk gene clusters, and placed this gene firmly within the orbicularian MaSp2 clade. Gene tree–species tree reconciliations show a pattern of multiple gene duplication throughout spider silk evolution, and pinpoint the oldest speciation in which MaSps must have been present in spiders on the mygalomorph–araneomorph split, 240 MYA. Therefore, while not refuting orb weaver monophyly, MaSp2s, and major ampullate silks in general cannot be classified as orbicularian synapomorphies, but have to be considered plesiomorphic for Opisthothelae. The evidence presented here challenges the simplified notion that mygalomorphs spin only one kind of silk, and adds to the suite of information suggesting a pattern of early niche diversification between Araneomorphae and Mygalomorphae. Additionally, mygalomorph MaSp2-like might accommodate mechanical demands arising from the arboreal habitat preference of Avicularia.  相似文献   

6.
The abdominal appendages on male Themira biloba (Diptera: Sepsidae) are complex novel structures used during mating. These abdominal appendages superficially resemble the serially homologous insect appendages in that they have a joint and a short segment that can be rotated. Non-genital appendages do not occur in adult pterygote insects, so these abdominal appendages are novel structures with no obvious ancestry. We investigated whether the genes that pattern the serially homologous insect appendages have been co-opted to pattern these novel abdominal appendages. Immunohistochemistry was used to determine the expression patterns of the genes extradenticle (exd), Distal-less (Dll), engrailed (en), Notch, and the Bithorax Complex in the appendages of T. biloba during pupation. The expression patterns of Exd, En, and Notch were consistent with the hypothesis that a portion of the patterning pathway that establishes the coxopodite has been co-opted to pattern the developing abdominal appendages. However, Dll was only expressed in the bristles of the developing appendages and not the proximal–distal axis of the appendage itself. The lack of Dll expression indicates the absence of a distal domain of the appendage suggesting that sepsid abdominal appendages only use genes that normally pattern the base of segmental appendages.  相似文献   

7.
Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae ('true spiders'). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions of spidroins that perform different ecological functions.  相似文献   

8.
During early brain development in Drosophila a highly stereotyped pattern of axonal scaffolds evolves by precise pioneering and selective fasciculation of neural fibers in the newly formed brain neuromeres. Using an axonal marker, Fasciclin II, we show that the activities of the extradenticle (exd) and homothorax (hth) genes are essential to this axonal patterning in the embryonic brain. Both genes are expressed in the developing brain neurons, including many of the tract founder cluster cells. Consistent with their expression profiles, mutations of exd and hth strongly perturb the primary axonal scaffolds. Furthermore, we show that mutations of exd and hth result in profound patterning defects of the developing brain at the molecular level including stimulation of the orthodenticle gene and suppression of the empty spiracles and cervical homeotic genes. In addition, expression of a Drosophila Pax6 gene, eyeless, is significantly suppressed in the mutants except for the most anterior region. These results reveal that, in addition to their homeotic regulatory functions in trunk development, exd and hth have important roles in patterning the developing brain through coordinately regulating various nuclear regulatory genes, and imply molecular commonalities between the developmental mechanisms of the brain and trunk segments, which were conventionally considered to be largely independent. Received: 4 October 1999 / Accepted: 10 January 2000  相似文献   

9.
Silk is the most recognizable trait of spiders, and silk use has changed throughout spider evolutionary history. While morphology of the adult silk spigot has been a useful character for systematics, few studies have examined the ontogeny of the spinning apparatus, and none of these included cribellate spiders. Here, we report the first published full ontogeny of the spinning apparatus of a cribellate spider, Tengella perfuga. We found the presence of expected spigots: major ampullate gland and piriform gland spigots on the anterior lateral spinneret, minor ampullate gland and aciniform gland spigots on the posterior median spinneret, and aciniform gland spigots on the posterior lateral spinneret. Females, but not males, possessed cylindrical gland spigots on both the posterior median and lateral spinnerets. Spiderlings did not possess a functioning cribellum until the third instar. The cribellum grew with increasing numbers of spigots, but functionality was lost in adult males. Most intriguingly, second instars possessed a distinct triad of pre‐spigots on the posterior lateral spinneret. From the third instar onward, these structures formed the modified spigot along with two flanking spigots (in females) or formed nubbins (in males). We suggest that the modified spigot serves as the source of axial lines in the cribellate silk produced in T. perfuga. We also compare spigot ontogeny from previous studies of ecribellate spiders. These comparisons warrant further exploration using the recent spider tree of life in a phylogenetic comparative analysis of spigot ontogeny datasets, which could yield evidence for homologous spigots across the Araneomorphae, notably the Araneoidea and the Retrolateral Tibial Apophysis (RTA) clades.  相似文献   

10.
The genus Oxytate L. Koch, 1878 comprises a homogeneous group of nocturnal crab spiders that have silk apparatuses even though they do not spin webs to trap prey. We examined the microstructure of the silk spinning apparatus of the green crab spider Oxytate striatipes, using field emission scanning electron microscopy. The silk glands of the spider were classified into three types: ampullate, pyriform and aciniform. The spigots of these three types of silk gland occur in both sexes. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pairs of minor ampullate glands supply the median spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets (45 pairs in females and 40 pairs in males), and the aciniform glands feed silk into the median (9–12 pairs in females and 7–10 pairs in males) and the posterior (30 pairs in both sexes) spinnerets. The spigot system of O. striatipes is simpler and more primitive than other wandering spiders: even the female spiders possess neither tubuliform glands for cocoon production nor triad spigots for web‐building.  相似文献   

11.
Polycomb group (PcG) proteins are negative regulators that maintain the expression of homeotic genes and affect cell proliferation. Pleiohomeotic (Pho) is a unique PcG member with a DNA-binding zinc finger motif and was proposed to recruit other PcG proteins to form a complex. The pho null mutants exhibited several mutant phenotypes such as the transformation of antennae to mesothoracic legs. We examined the effects of pho on the identification of ventral appendages and proximo-distal axis formation during postembryogenesis. In the antennal disc of the pho mutant, Antennapedia (Antp), which is a selector gene in determining leg identity, was ectopically expressed. The homothorax (hth), dachshund (dac) and Distal-less (Dll) genes involved in proximo-distal axis formation were also abnormally expressed in both the antennal and leg discs of the pho mutant. The engrailed (en) gene, which affects the formation of the anterior-posterior axis, was also misexpressed in the anterior compartment of antennal and leg discs. These mutant phenotypes were enhanced in the mutant background of Posterior sex combs (Psc) and pleiohomeotic-like (phol), which are another PcG genes. These results suggest that pho functions in maintaining expression of genes involved in the formation of ventral appendages and the proximo-distal axis.  相似文献   

12.
THE ORIGIN OF THE SPINNING APPARATUS IN SPIDERS   总被引:3,自引:0,他引:3  
  • 1 Previous attempts to explain the evolution of spider silk have relied heavily on conjecture. The formulation of testable historical hypotheses to replace such speculation is discussed.
  • 2 The importance of phylogenetic reconstructions and other historical hypotheses for use in generating and testing hypotheses concerning the evolution of specific adaptations is examined. Recent ideas on arachnid phylogeny are reviewed and their relevance to the problem of silk evolution in spiders is explored.
  • 3 Evidence from the analysis of three historical problems (origin of spinnerets, origin of silk glands, original selective pressure favouring evolution of silk) is reviewed from three different frames of reference (in-group analysis, out-group analysis, convergence analysis). Several lines of evidence are found which suggest that silk use originated in spiders due to selective pressures associated with reproduction (specifically, the transfer of sperm or the protection of eggs).
  • 4 The prevalence of segmental appendages retained for use in manipulating genital products in both arachnids and non-arachnid arthropods and the probable placement of spinnerets near the genital opening in ancestral spiders suggest that spinnerets represent modified gonopods.
  • 5 The most primitive types of silk glands are retained in virtually all spiders, in part, for use in the construction of sperm webs and egg sacs. Similar silk glands are found near the genital opening in many male spiders and used in building a portion of the sperm web.
  • 6 The silk of adult arthropods other than spiders is used largely in manipulating or protecting sex cells. If there are multiple functions, use in reproduction is typically one of them. Thus, there is evidence for strong selective pressure favouring the evolution of silk for use in reproduction.
  • 7 Two hypotheses are proposed which are consistent with the conclusion that silk in spiders evolved for reproductive needs (the spermatophore-sperm web and egg sac hypotheses). Testable predictions of each hypothesis are proposed.
  相似文献   

13.
The silk spinning apparatus in the crab spider, Misumenops tricuspidatus was studied with the field emission scanning electron microscope (FESEM) and the main microstructural characteristics of the silk glands are presented. In spite of the fact that the crab spiders do not spin webs to trap a prey, they also have silk apparatus even though the functions are not fully defined. The crab spider, Misumenops tricuspidatus possesses only three types of silk glands which connected through the typical spinning tubes on the spinnerets. The spinning apparatus of Misumenops closely corresponds to that of wandering spiders such as jumping spiders or wolf spiders except some local variations. Anterior spinnerets comprise 2 pairs of the ampullates and 48 (±5) pairs of pyriform glands. Another 2 pairs of ampullate glands and nearly 20 (±3) pairs of aciniform glands were connected on the middle spinnerets. Additional 50 (±5) pairs of the aciniform glands were connected on the posterior spinnerets. The aggregate glands and the flagelliform glands which have the function of sticky capture thread production in orb‐web spiders as well as the tubuliform glands for cocoon production in females were not developed at both sexes of this spider, characteristically.  相似文献   

14.
A major prerequisite to understanding the evolution of developmental programs includes an appreciation of gene function in a comparative context. RNA interference (RNAi) represents a powerful method for reverse genetics analysis of gene function. However, RNAi protocols exist for only a handful of arthropod species. To extend functional analysis in basal arthropods, we developed a RNAi protocol for the two-spotted spider mite Tetranychus urticae focusing on Distal-less (Dll), a conserved gene involved in appendage specification in metazoans. First, we describe limb morphogenesis in T. urticae using confocal and scanning electron microscopy. Second, we examine T. urticae Dll (Tu-Dll) mRNA expression patterns and correlate its expression with appendage development. We then show that fluorescently labeled double-stranded RNA (dsRNA) and short interfering RNA (siRNA) molecules injected into the abdomen of adult females are incorporated into the oviposited eggs, suggesting that dsRNA reagents can be systemically distributed in spider mites. Injection of longer dsRNA as well as siRNA induced canonical limb truncation phenotypes as well as the fusion of leg segments. Our data suggest that Dll plays a conserved role in appendage formation in arthropods and that such conserved genes can serve as reliable starting points for the development of functional protocols in nonmodel organisms.  相似文献   

15.
Currently, studies on major ampullate spidroin 1 (MaSp1) genes of non-orb weaving spiders are few, and it is not clear whether genes of these organisms exhibit the same characteristics as those of orb-weavers. In addition, many studies have proposed that MaSp1 might be a single gene with allelic variants, but supporting evidence is still lacking. In this study, we compared partial DNA and amino acid sequences of MaSp1 cloned from different spider guilds. We also cloned partial MaSp1 sequences from genomic DNA and cDNA of the same individuals of spiders using the same primer combination to see if different molecular forms existed. In the repetitive region of partial MaSp1 sequences obtained, GGX, GA and poly-A motifs were present in all Araneomorphae and Mygalomorpae species examined. An extreme similarity in MaSp1 non-repetitive portions was found in sequences of ecribellate, cribellate and Mygalomorphae web-builders and such a result suggested that this sequence might exhibit an important function. A comparison of sequences amplified from the same individual showed that substitutions in amino acids occurred in both repetitive and non-repetitive regions, with a much higher variation in the former. These results suggest that the MaSp1 of Araneomorphae spiders exhibits several forms in an individual spider and it might be either a multiple gene or a single gene with a multiple exon/intron organization.  相似文献   

16.
Spider diversity is partitioned into three primary clades, namely Mesothelae, Mygalomorphae, and Araneomorphae. Mygalomorph cytogenetics is largely unknown. Our study revealed a remarkable karyotype diversity of mygalomorphs. Unlike araneomorphs, they show no general trend towards a decrease of 2n, as the chromosome number was reduced in some lineages and increased in others. A biarmed karyotype is a symplesiomorphy of mygalomorphs and araneomorphs. Male meiosis of some mygalomorphs is achiasmatic, or includes the diffuse stage. The sex chromosome system X1X20, which is supposedly ancestral in spiders, is uncommon in mygalomorphs. Many mygalomorphs exhibit more than two (and up to 13) X chromosomes in males. The evolution of X chromosomes proceeded via the duplication of chromosomes, fissions, X–X, and X‐autosome fusions. Spiders also exhibit a homomorphic sex chromosome pair. In the germline of mygalomorph males these chromosomes are often deactivated; their deactivation and pairing is initiated already at spermatogonia. Remarkably, pairing of sex chromosomes in mygalomorph females is also initiated at gonial cells. Some mygalomorphs have two sex chromosome pairs. The second pair presumably arose in early‐diverging mygalomorphs, probably via genome duplication. The unique behaviour of spider sex chromosomes in the germline may promote meiotic pairing of homologous sex chromosomes and structural differentiation of their duplicates, as well as the establishment of polyploid genomes. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 377–408.  相似文献   

17.
Lyriform slits sense organs (LSSO) are a precise assembly of stress detecting cuticular slit sensilla found on the appendages of arachnids. While these structures on the legs of the wandering spiderCupennius salei are well studied in terms of morphology, function and contribution to behaviour, their distribution on pedipalps and spinnerets of spiders is not well explored. A study was therefore carried out to observe the distribution of LSSO on pedipalps and spinnerets of some spider species. Haplogyne spiders belonging to familyPholcidae have a simple complement of LSSOs represented by one or two LSSOs on their femur. The entelegyne spiders possess a complex assembly of LSSOs on the distal segments of their pedipalps. Various types of LSSOs are found on the pedipalps indicating a capacity for analysis of complex cuticular stress. It is suggested that the complexity of LSSOs on pedipalps of entelegyne spiders relates to courtship and spermatophore transfer and may help in reproductive isolation. Lack of LSSOs on the distal segments of pedipalps leads us to infer that unlike legs, pedipalps are less likely to receive vibratory input through their distal segments. Spinnerets have a relatively simple complement of LSSOs. One LSSO is found only on anterior spinnerets and it is a common feature observed among spiders, irrespective of the variations in web building behaviour. The orb-weaving araneidArgiope pulchella, however, has two LSSOs on the anterior spinneret. As non-web builders and orb weavers do not differ markedly in terms of LSSOs on the spinnerets and LSSOs are simple in nature (type A), it is likely that spinning and weaving are not largely regulated by sensory input from LSSOs on the spinnerets.  相似文献   

18.
The microstructural organization of the silk‐spinning apparatus of the comb‐footed spider, Achaearanea tepidariorum, was observed by using a field emission scanning electron microscope. The silk glands of the spider were classified into six groups: ampullate, tubuliform, flagelliform, aggregate, aciniform and pyriform glands. Among these, three types of silk glands, the ampullate, pyriform and aciniform glands, occur only in female spiders. One (adult) or two (subadult) pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another pair of minor ampullate glands supply the median spinnerets. Three pairs of tubuliform glands in female spiders send secretory ductules to the median (one pair) and posterior (two pairs) spinnerets. Furthermore, one pair of flagelliform glands and two pairs of aggregate glands together supply the posterior spinnerets, and form a characteristic spinning structure known as a “triad” spigot. In male spiders, this combined apparatus of the flagelliform and the aggregate spigots for capture thread production is not apparent, instead only a non‐functional remnant of this triad spigot is present. In addition, the aciniform glands send ductules to the median (two pairs) and the posterior spinnerets (12–16 pairs), and the pyriform glands feed silk into the anterior spinnerets (90–100 pairs in females and 45–50 pairs in males).  相似文献   

19.
The proximo‐distal axis of the arthropod leg is patterned by mutually antagonistic developmental expression domains of the genes extradenticle, homothorax, dachshund, and Distal‐less. In the deutocerebral appendages (the antennae) of insects and crustaceans, the expression domain of dachshund is frequently either absent or, if present, is not required to pattern medial segments. By contrast, the dachshund domain is entirely absent in the deutocerebral appendages of spiders, the chelicerae. It is unknown whether absence of dachshund expression in the spider chelicera is associated with the two‐segmented morphology of this appendage, or whether all chelicerates lack the dachshund domain in their chelicerae. We investigated gene expression in the harvestman Phalangium opilio, which bears the plesiomorphic three‐segmented chelicera observed in “primitive” chelicerate orders. Consistent with patterns reported in spiders, in the harvestman chelicera homothorax, extradenticle, and Distal‐less have broadly overlapping developmental domains, in contrast with mutually exclusive domains in the legs and pedipalps. However, unlike in spiders, the harvestman chelicera bears a distinct expression domain of dachshund in the proximal segment, the podomere that is putatively lost in derived arachnids. These data suggest that a tripartite proximo‐distal domain structure is ancestral to all arthropod appendages, including deutocerebral appendages. As a corollary, these data also provide an intriguing putative genetic mechanism for the diversity of arachnid chelicerae: loss of developmental domains along the proximo‐distal axis.  相似文献   

20.
The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late-larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号