首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chimeric molecules between human lipoprotein lipase (LPL) and rat hepatic lipase (HL) were used to identify structural elements responsible for functional differences. Based on the close sequence homology with pancreatic lipase, both LPL and HL are believed to have a two-domain structure composed of an amino-terminal (NH2-terminal) domain containing the catalytic Ser-His-Asp triad and a smaller carboxyl-terminal (COOH-terminal) domain. Experiments with chimeric lipases containing the HL NH2-terminal domain and the LPL COOH-terminal domain (HL/LPL) or the reverse chimera (LPL/HL) showed that the NH2-terminal domain is responsible for the catalytic efficiency (Vmax/Km) of these enzymes. Furthermore, it was demonstrated that the stimulation of LPL activity by apolipoprotein C-II and the inhibition of activity by 1 M NaCl originate in structural features within the NH2-terminal domain. HL and LPL bind to vascular endothelium, presumably by interaction with cell surface heparan sulfate proteoglycans. However, the two enzymes differ significantly in their heparin affinity. Experiments with the chimeric lipases indicated that heparin binding avidity was primarily associated with the COOH-terminal domain. Specifically, both HL and the LPL/HL chimera were eluted from immobilized heparin by 0.75 M NaCl, whereas 1.1 M NaCl was required to elute LPL and the HL/LPL chimera. Finally, HL is more active than LPL in the hydrolysis of phospholipid substrates. However, the ratio of phospholipase to neutral lipase activity in both chimeric lipases was enhanced by the presence of the heterologous COOH-terminal domain, demonstrating that this domain strongly influences substrate specificity. The NH2-terminal domain thus controls the kinetic parameters of these lipases, whereas the COOH-terminal domain modulates substrate specificity and heparin binding.  相似文献   

2.
Lipoprotein lipase (LPL), a key enzyme which initiates the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins, consists of multiple functional domains which are necessary for normal activity. The catalytic domain of LPL mediates the esterase function of the enzyme but separate lipid binding sites have been proposed to be involved in the interaction of LPL with emulsified lipid substrates at the water-lipid interface. Like pancreatic lipase (PL), LPL contains a surface loop covering the catalytic pocket that may modulate access of the substrate to the active site of the enzyme. Secondary structural analysis of this loop reveals a helix-turn-helix motif with two short amphipathic helices that have hydrophobic moments of 0.64 and 0.68. In order to investigate the role of the loop in the initial interaction of LPL with its substrate, we utilized site-directed mutagenesis to generate eight constructs in which the amphipathic properties of the loop were altered and expressed them in human embryonal kidney-293 cells. Reducing the amphiphilicity without changing the predicted secondary structure of the loop abolished the ability of the lipase to hydrolyze emulsified, long chain fatty acid triglycerides (triolein) but not the water soluble substrate tributyrin. Replacing the loop of LPL with the loop of hepatic lipase, which differs in 15 of 22 amino acids but is also amphiphilic, led to the expression of an enzyme that retained both triolein and tributyrin hydrolyzing activity. Substitution of the LPL loop by a short four amino acid peptide, which may allow more direct access to the active site than the 22 amino acid loop, enhanced hydrolysis of short chain fatty acid triglycerides by more than 2-fold, while the ability to hydrolyze emulsified substrates was abolished. Thus, disruption of the amphipathic structure of the LPL loop selectively decreases the hydrolysis of emulsified lipid substrate without affecting the esterase or catalytic function of the enzyme. These studies establish that the loop with its two amphipathic helices is essential for hydrolysis of long chain fatty acid substrate by LPL providing new insight into the role of the LPL loop in lipid-substrate interactions. We propose that the interaction between the lipoprotein substrates and the amphipathic helices within this loop may in part determine lipase substrate specificity.  相似文献   

3.
The triglyceride lipases of the pancreas   总被引:7,自引:0,他引:7  
Pancreatic triglyceride lipase (PTL) and its protein cofactor, colipase, are required for efficient dietary triglyceride digestion. In addition to PTL, pancreatic acinar cells synthesize two pancreatic lipase related proteins (PLRP1 and PLRP2), which have a high degree of sequence and structural homology with PTL. PLRP1 has no known activity. PTL and PLRP2 differ in substrate specificity, behavior in bile salts and dependence on colipase. Each protein has a globular amino-terminal (N-terminal) domain, which contains the catalytic site for PTL and PLRP2, and a beta-sandwich carboxyl-terminal (C-terminal) domain, which includes the predominant colipase-binding site for PTL. Inactive and active conformations of PTL have been described. They differ in the position of a surface loop, the lid domain, and of the beta5-loop. In the inactive conformation, the lid covers the active site and, upon activation by bile salt micelles and colipase or by lipid-water interfaces, the lid moves dramatically to open and configure the active site. After the lid movement, PTL and colipase create a large hydrophobic plateau that can interact with the lipid-water interface. A hydrophobic surface loop in the C-terminal domain, the beta5' loop, may also contribute to the interfacial-binding domain of the PTL-colipase complex.  相似文献   

4.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The C-terminal domain of lipoprotein lipase (LPL) is involved in several important interactions. To assess its contribution to the binding ability of full-length LPL we have determined kinetic constants using biosensor technique. The affinity of the C-terminal domain for heparin was about 500-fold lower than that of full-length LPL (K(d) = 1.3 microM compared to 3.1 nM). Replacement of Lys403, Arg405 and Lys407 by Ala abolished the heparin affinity, whereas replacement of Arg420 and Lys422 had little effect. The C-terminal domain increased binding of chylomicrons and VLDL to immobilized heparin relatively well, but was less than 10% efficient in binding of LDL compared to full-length LPL. Deletion of residues 390-393 (WSDW) did not change the affinity to heparin and only slightly decreased the affinity to lipoproteins. We conclude that the C-terminal folding domain contributes only moderately to the heparin affinity of full-length LPL, whereas the domain appears important for tethering triglyceride-rich lipoproteins to heparin-bound LPL.  相似文献   

6.
The triglyceride (TG) lipase gene subfamily, consisting of LPL, HL, and endothelial lipase (EL), plays a central role in plasma lipoprotein metabolism. Compared with LPL and HL, EL is relatively more active as a phospholipase than as a TG lipase. The amino acid loop or "lid" covering the catalytic site has been implicated as the basis for the difference in substrate specificity between HL and LPL. To determine the role of the lid in the substrate specificity of EL, we studied EL in comparison with LPL by mutating specific residues of the EL lid and exchanging their lids. Mutation studies showed that amphipathic properties of the lid contribute to substrate specificity. Exchanging lids between LPL and EL only partially shifted the substrate specificity of the enzymes. Studies of a double chimera possessing both the lid and the C-terminal domain (C-domain) of EL in the LPL backbone showed that the role of the lid in determining substrate specificity does not depend on the nature of the C-domain of the lipase. Using a kinetic assay, we showed an additive effect of the EL lid on the apparent affinity for HDL(3) in the presence of the EL C-domain.  相似文献   

7.
Lipoprotein lipase (LPL) acts at the vascular endothelium. Earlier studies have shown that down-regulation of adipose tissue LPL during fasting is post-translational and involves a shift from active to inactive forms of the lipase. Studies in cell systems had indicated that during fasting LPL might be retained in the endoplasmic reticulum. We have now explored the relation between active/inactive and intra/extracellular forms of the lipase. Within adipocytes, neither LPL mass nor the distribution of LPL between active and inactive forms changed on fasting. Extracellular LPL mass also did not change significantly, but shifted from predominantly active to predominantly inactive. To explore if changes in secretion were compensated by changes in turnover, synthesis of new protein was blocked by cycloheximide. The rates at which intra- and extracellular LPL mass and activity decreased did not change on fasting. To further explore how LPL is distributed in the tissue, heparin (which detaches the enzyme from the endothelial surface) was injected. Tissue LPL activity decreased by about 10% in 2 min and by 50% in 1 h. Heparin released mainly the active form of the lipase. There was no change of LPL activity or mass within adipocytes. The fraction of extracellular LPL that heparin released and the time course were the same in fed and fasted rats, indicating that active, extracellular LPL was distributed in a similar way in the two nutritional states. This study suggests that the nutritional regulation of LPL in adipose tissue determines the activity state of extracellular LPL.  相似文献   

8.
The relationship between glycosylation, dimerization, and heparin affinity of lipoprotein lipase (LPL) was studied in 3T3-L1 adipocytes. Three forms of LPL subunits were found in normal cells; totally endo H-resistant (57 kDa), partially sensitive (54 kDa), and totally sensitive (51 kDa) forms. LPL in normal cells was active, dimeric, and showed high affinity for heparin. LPL in cells treated with tunicamycin, preventing the transfer of N-linked oligosaccharide chain, was unglycosylated (51 kDa) and inactive. LPL proteins were found as an aggregate, and had low affinity for heparin. After treatment with castanospermine, an inhibitor of ER glucosidase I, 80% of LPL activity was inhibited. Most of LPL proteins were totally endo H-sensitive, present as an aggregate, and had low affinity for heparin. LPL in cells treated with deoxymannojirimycin, an inhibitor of Golgi mannosidase I, was active, dimeric, and had high affinity for heparin as in normal cells. But LPL subunits were all endo H-sensitive. These results suggest that core glycosylation and subsequent removal of glucose residue is required, but processing after Golgi mannosidase I is not necessary for dimerization and acquisition of high heparin affinity of LPL.  相似文献   

9.
Ubiquitin-specific protease 8 (USP8) hydrolyzes mono and polyubiquitylated targets such as epidermal growth factor receptors and is involved in clathrin-mediated internalization. In 1182 residues, USP8 contains multiple domains, including coiled-coil, rhodanese, and catalytic domains. We report the first high-resolution crystal structures of these domains and discuss their implications for USP8 function. The amino-terminal domain is a homodimer with a novel fold. It is composed of two five-helix bundles, where the first helices are swapped, and carboxyl-terminal helices are extended in an antiparallel fashion. The structure of the rhodanese domain, determined in complex with the E3 ligase NRDP1, reveals the canonical rhodanese fold but with a distorted primordial active site. The USP8 recognition domain of NRDP1 has a novel protein fold that interacts with a conserved peptide loop of the rhodanese domain. A consensus sequence of this loop is found in other NRDP1 targets, suggesting a common mode of interaction. The structure of the carboxyl-terminal catalytic domain of USP8 exhibits the conserved tripartite architecture but shows unique traits. Notably, the active site, including the ubiquitin binding pocket, is in a closed conformation, incompatible with substrate binding. The presence of a zinc ribbon subdomain near the ubiquitin binding site further suggests a polyubiquitin-specific binding site and a mechanism for substrate induced conformational changes.  相似文献   

10.
海水鱼真鲷脂蛋白脂肪酶基因cDNA序列与组织表达   总被引:8,自引:0,他引:8  
为研究脊椎动物真鲷脂蛋白脂肪酶 (LPL)结构与功能关系以及探讨动脉粥样硬化形成机理 ,通过构建cDNA文库 ,克隆对动脉粥样硬化表现抗性的海水鱼真鲷LPL基因cDNA全序列 .再通过PCR方法扩增基因组DNA ,获取内含子 9及其两侧序列以确定外显子 10的大小 ,最后通过RT PCR ,以 β肌动蛋白为外参照 ,比较真鲷在食用两种脂肪含量不同饲料和摄食状态不同的处理条件下 ,肝脏和腹腔肠系膜脂肪组织LPLmRNA的相对水平 .从腹腔肠系膜脂肪组织cDNA文库中克隆出LPLcDNA序列 ,其完整的开放阅读框架由 15 36bp组成 ,编码 5 11个氨基酸残基 .与哺乳类不同 ,真鲷LPL基因外显子 10的开始部分是翻译的 .LPL的催化位点、二硫键位点、N 糖基化位点、肝素结合区、脂质结合位点、介导脂蛋白与低密度脂蛋白受体结合位点、二聚体形成位点等主要功能域在真骨鱼类真鲷与其它脊椎动物间基本保守 ,但肝素结合区的碱性氨基酸残基含量较人类减少 ,并在结合脂质底物的疏水环套中出现插入片段 .与哺乳类不同 ,真鲷LPL基因在成体肝脏存在诱导性表达 ,而在其腹腔肠系膜脂肪组织则存在与哺乳类相似的组成性表达 .当真鲷喂食高脂饲料时 ,其饱食状态下肝脏LPLmRNA水平升高 ,但对其腹腔肠系膜脂肪组织LPL表达没有影响 .当真鲷喂食标准商业饲料时 ,  相似文献   

11.
The active form of lipoprotein lipase (LPL) is a noncovalent homodimer of 55-kDa subunits. The dimer is unstable and tends to undergo irreversible dissociation into inactive monomers. We noted that a preparation of such monomers slowly regained traces of activity under assay conditions with substrate, heparin, and serum or in cell culture medium containing serum. We therefore studied the refolding pathway of LPL after full denaturation in 6 M guanidinium chloride or after dissociation into monomers in 1 M guanidinium chloride. In crude systems, we identified serum as the factor promoting reactivation. Further investigations demonstrated that Ca2+ was the crucial component in serum for reactivation of LPL and that refolding involved at least two steps. Studies of far-UV circular dichroism, fluorescence, and proteolytic cleavage patterns showed that LPL started to refold from the C-terminal domain, independent of calcium. The first step was rapid and resulted in formation of an inactive monomer with a completely folded C-terminal domain, whereas the N-terminal domain was in the molten globule state. The second step was promoted by Ca2+ and converted LPL monomers from the molten globule state to dimerization-competent and more tightly folded monomers that rapidly formed active LPL dimers. The second step was slow, and it appears that proline isomerization (rather than dimerization as such) is rate-limiting. Inactive monomers isolated from human tissue recovered activity under the influence of Ca2+. We speculate that Ca2+-dependent control of LPL dimerization might be involved in the normal post-translational regulation of LPL activity.  相似文献   

12.
Low density lipoprotein (LDL) and oxidized LDL are associated with collagen in the arterial intima, where the collagen is coated by the small proteoglycan decorin. When incubated in physiological ionic conditions, decorin-coated collagen bound only small amounts of native and oxidized LDL, the interaction being weak. When decorin-coated collagen was first allowed to bind lipoprotein lipase (LPL), binding of native and oxidized LDL increased dramatically (23- and 7-fold, respectively). This increase depended on strong interactions between LPL that was bound to the glycosaminoglycan chains of the collagen-bound decorin and native and oxidized LDL (kDa 12 and 5.9 nM, respectively). To distinguish between binding to monomeric (inactive) and dimeric (catalytically active) forms of LPL, affinity chromatography on heparin columns was conducted, which showed that native LDL bound to the monomeric LPL, whereas oxidized LDL, irrespective of the type of modification (Cu(2+), 2, 2'-azobis(2-amidinopropane)hydrochloride, hypochlorite, or soybean 15-lipoxygenase), bound preferably to dimeric LPL. However, catalytic activity of LPL was not required for binding to oxidized LDL. Finally, immunohistochemistry of atherosclerotic lesions of human coronary arteries revealed specific areas in which LDL, LPL, decorin, and collagen type I were present. The results suggest that LPL can retain LDL in atherosclerotic lesions along decorin-coated collagen fibers.  相似文献   

13.
The interaction of hepatic lipase (HL) with heparan sulfate is critical to the function of this enzyme. The primary amino acid sequence of HL was compared to that of lipoprotein lipase (LPL), a related enzyme that possesses several putative heparin-binding domains. Of the three putative heparin-binding clusters of LPL (J. Biol. Chem. 1994. 269: 4626-4633; J. Lipid Res. 1998. 39: 1310-1315), one was conserved in HL (Cluster 1; residues Lys 297-Arg 300 in rat HL) and two were partially conserved (Cluster 2; residues Asp 307-Phe 320, and Cluster 4; residues Lys 337, and Thr 432-Arg 443). Mutants of HL were generated in which potential heparin-binding residues within Clusters 1 and 4 were changed to Asn. Two chimeras in which the LPL heparin-binding sequences of Clusters 2 and 4 were substituted for the analogous HL sequences were also constructed. These mutants were expressed in Chinese hamster ovary (CHO) cells and assayed for heparin-binding ability using heparin-Sepharose chromatography and a CHO cell-binding assay. The results suggest that residues within the homologous Cluster 1 region (Lys 297, Lys 298, and Arg 300), as well as some residues in the partially conserved Cluster 4 region (Lys 337, Lys 436, and Arg 443), are involved in the heparin binding of hepatic lipase. In the cell-binding assay, heparan sulfate-binding affinity equal to that of LPL was seen for the RHL chimera mutant that possessed the Cluster 4 sequence of LPL. Mutation of Cluster 1 residues of HL resulted in a major reduction in heparin binding ability as seen in both the cell-binding assay and the heparin-Sepharose elution profile. These results suggest that Cluster 1, the N-terminal heparin-binding domain, is of primary significance in RHL. This is different for LPL: mutations in the C-terminal binding domain (Cluster 4) cause a more significant shift in the salt required for elution from heparin-Sepharose than mutations in the N-terminal domain (Cluster 1).  相似文献   

14.
Hu Y  Ren Y  Luo RZ  Mao X  Li X  Cao X  Guan L  Chen X  Li J  Long Y  Zhang X  Tian H 《Journal of lipid research》2007,48(8):1681-1688
Increased plasma triglyceride and free fatty acid levels are frequently associated with type 2 diabetes mellitus (T2DM). To test the hypothesis that LPL gene mutations contribute to the hypertriglyceridemia observed in members of T2DM pedigrees, we screened the LPL gene in 53 hypertriglyceridemic members of 26 families. Four known and three novel mutations were identified. All three novel mutations, Lys312insC, Thr361insA, and double mutation Lys312insC + Asn291Ser, are clinically associated with hypertriglyceridemia. In vitro mutagenesis and expression studies confirm that these variants are associated with a significant reduction in LPL activity. The modeled structures displaying the Lys312insC and Thr361insA mutations showed loss of the activity-related C-terminal domain in the LPL protein. Another novel double mutation, Lys312insC + Asn291Ser, resulted in the loss of the catalytic ability of LPL attributable to the complete loss of the C-terminal domain and alteration in the heparin association site. Thus, these novel mutations of the LPL gene contribute to the hypertriglyceridemia observed in members of type 2 diabetic pedigrees.  相似文献   

15.
Lipoprotein lipase (LPL) plays a central role in normal lipid metabolism as the key enzyme involved in the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins. LPL is a member of a family of hydrolytic enzymes that include hepatic lipase and pancreatic lipase. Based on primary sequence homology of LPL to pancreatic lipase, Ser-132, Asp-156, and His-241 have been proposed to be part of a domain required for normal enzymic activity. We have analyzed the role of these potential catalytic residues by site-directed mutagenesis and expression of the mutant LPL in human embryonic kidney-293 cells. Substitution of Ser-132, Asp-156, and His-241 by several different residues resulted in the expression of an enzyme that lacked both triolein and tributyrin esterase activities. Mutation of other conserved residues, including Ser-97, Ser-307, Asp-78, Asp-371, Asp-440, His-93, and His-439 resulted in the expression of active enzymes. Despite their effect on LPL activity, substitutions of Ser-132, Asp-156, and His-241 did not change either the heparin affinity or lipid binding properties of the mutant LPL. In summary, mutation of Ser-132, Asp-156, and His-241 specifically abolishes total hydrolytic activity without disrupting other important functional domains of LPL. These combined results strongly support the conclusion that Ser-132, Asp-156, and His-241 form the catalytic triad of LPL and are essential for LPL hydrolytic activity.  相似文献   

16.
MonoTIM is a stable monomeric variant of the dimeric trypanosomal enzyme triose phosphate isomerase (TIM) with less, but significant, catalytic activity. It is known that in TIM, three residues, Lys 13 (loop 1), His 95 (loop 4), and Glu 167 (loop 6) are the crucial catalytic residues. In the wild-type TIM dimer, loop 1 and loop 4 are very rigid because of tight interactions with residues of the other subunit. Previous structural studies indicate that Lys 13 and His 95 have much increased conformational flexibility in monoTIM. Using site-directed mutagenesis, it is shown here that Lys 13 and His 95 are nevertheless essential for optimal catalysis by monoTIM: monoTIM-K13A is completely inactive, although it can still bind substrate analogues, and monoTIM-H95A is 50 times less active. The best inhibitors of wild-type TIM are phosphoglycolohydroxamate (PGH) and 2-phosphoglycolate (2PG), with KI values of 8 microM and 26 microM, respectively. The affinity of the monoTIM active site for PGH has been reduced approximately 60-fold, whereas for 2PG, only a twofold weakening of affinity is observed. The mode of binding, as determined by protein crystallographic analysis of these substrate analogues, shows that, in particular, 2PG interacts with Lys 13 and His 95 in a way similar but not identical to that observed for the wild-type enzyme. This crystallographic analysis also shows that Glu 167 has the same interactions with the substrate analogues as in the wild type. The data presented suggest that, despite the absence of the second subunit, monoTIM catalyzes the interconversion of D-glyceraldehyde-3-phosphate and dihydroxyacetone phosphate via the same mechanism as in the wild type.  相似文献   

17.
Phosphonoacetaldehyde hydrolase (phosphonatase) from Bacillus cereus catalyzes hydrolytic P-C bond cleavage of phosphonoacetaldehyde (Pald) via a Schiff base intermediate formed with Lys53. A single turnover requires binding of Pald to the active site of the core domain, closure of the cap domain containing the Lys53 over the core domain, and dissociation of the products following catalysis. The ligand binding and dissociation steps occur from the "open conformer" (domains are separated and the active site is solvent-exposed), while catalysis occurs from the "closed conformer" (domains are bound together and the active site is sequestered from solvent). To test the hypothesis that bound substrate stabilizes the closed conformer, thus facilitating catalysis, the rates of chemical modification of Lys53 in the presence and absence of inert substrate and/or product analogues were compared. Acetylation of Lys53 with 2,4-dinitrophenylacetate (DNPA) resulted in the loss of enzyme activity. The pseudo-first-order rate constant for inactivation varied with pH. The pH profile of inactivation is consistent with a pK(a) of 9.3 for Lys53. The inhibitors tungstate and vinyl sulfonate, which are known to bind to active site residues comprising the core domain, protected Lys53 from acetylation. These results are consistent with a dynamic equilibrium between the open and closed conformations of phosphonatase and the hypothesis that ligand binding stabilizes the closed conformation required for catalytic turnover.  相似文献   

18.
Membrane-bound proteases are involved in various regulatory functions. Our previous study indicated that the N-terminal region of an open reading frame, PH1510 (residues 16-236, designated as 1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii, is a serine protease with a catalytic Ser-Lys dyad that specifically cleaves the C-terminal hydrophobic residues of a membrane protein, the stomatin-homolog PH1511. In humans, an absence of stomatin is associated with a form of hemolytic anemia known as hereditary stomatocytosis, but the function of stomatin is not fully understood. Here, we report the crystal structure of 1510-N in dimeric form. Each active site of 1510-N is rich in hydrophobic residues, which accounts for the substrate-specificity. The monomer of 1510-N shows structural similarity to one monomer of Escherichia coli ClpP, an ATP-dependent tetradecameric protease. But, their oligomeric forms are different. Major contributors to dimeric interaction in 1510-N are the alpha7 helix and beta9 strand, both of which are missing from ClpP. While the long handle region of ClpP contributes to the stacking of two heptameric rings, the corresponding L2 loop of 1510-N is disordered because the region has little interaction with other residues of the same molecule. The catalytic Ser97 of 1510-N is in almost the same location as the catalytic Ser97 of E.coli ClpP, whereas another residue, Lys138, presumably forming the catalytic dyad, is located in the disordered L2 region of 1510-N. These findings suggest that the binding of the substrate to the catalytic site of 1510-N induces conformational changes in a region that includes loop L2 so that Lys138 approaches the catalytic Ser97.  相似文献   

19.
p21-activated kinases (PAKs) play an important role in diverse cellular processes. Full activation of PAKs requires autophosphorylation of a critical threonine/serine located in the activation loop of the kinase domain. Here we report crystal structures of the phosphorylated and unphosphorylated PAK1 kinase domain. The phosphorylated PAK1 kinase domain has a conformation typical of all active protein kinases. Interestingly, the structure of the unphosphorylated PAK1 kinase domain reveals an unusual dimeric arrangement expected in an authentic enzyme-substrate complex, in which the activation loop of the putative "substrate" is projected into the active site of the "enzyme." The enzyme is bound to AMP-PNP and has an active conformation, whereas the substrate is empty and adopts an inactive conformation. Thus, the structure of the asymmetric homodimer mimics a trans-autophosphorylation complex, and suggests that unphosphorylated PAK1 could dynamically adopt both the active and inactive conformations in solution.  相似文献   

20.
Lipoprotein lipase (LPL) is dependent on apolipoprotein CII (apoCII), a component of plasma lipoproteins, for function in vivo. The hydrophobic fluorescent probe 1,1'-bis(anilino)-4,4'-bis(naphthalene)-8,8'-disulfonate (bis-ANS) was found to be a potent inhibitor of LPL. ApoCII prevented the inhibition by bis-ANS, and was also able to restore the activity of inhibited LPL in a competitive manner, but only with triacylglycerols with acyl chains longer than three carbons. Studies of fluorescence and surface plasmon resonance indicated that LPL has an exposed hydrophobic site for binding of bis-ANS. The high affinity interaction was characterized by an equilibrium constant Kd of 0.10-0.26 microm and by a relatively high on rate constant kass = 2.0 x 10(4) m(-1) s(-1) and a slow off-rate with a dissociation rate constant kdiss = 1.2 x 10(-4) s(-1). The high affinity binding of bis-ANS did not influence interaction of LPL with heparin or with lipid/water interfaces and did not dissociate the active LPL dimer into monomers. Analysis of fragments of LPL after photoincorporation of bis-ANS indicated that the high affinity binding site was located in the middle part of the N-terminal folding domain. We propose that bis-ANS binds to an exposed hydrophobic area that is located close to the active site. This area may be the binding site for individual substrate molecules and also for apoCII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号