首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative lipid metabolism of rats and hamsters was investigated to determine the metabolic basis for the relatively high concentrations of serum triglycerides in the hamster. It was found that serum free fatty acids (FFA) in the hamster are higher than in the rat in the fed condition. In addition, a higher percentage of the fatty acids esterified in the liver of the hamster is utilized for triglyceride synthesis. These factors combine to elevate hepatic triglyceride synthesis in the hamster. However, triglyceride does not accumulate in the liver in these animals in the fed state. In fact, liver triglycerides are lower in the fed hamster than in the fed rat, and the hamster stores much less triglyceride in liver lipid droplets than does the rat in this nutritional state. Most of the liver triglyceride in fed hamsters is present in dense particles corresponding to vesicular lipoprotein triglyceride in the secretory pool. In isolated organ perfusion experiments hamsters livers exhibited greater net triglyceride secretion than did rat livers. Serum triglycerides in the hamster remain elevated in the fasting state. In this condition the high proportion of free fatty acids utilized for liver triglyceride synthesis, relative to that incorporated into hepatic phospholipids, persists in the hamster and marked liver triglyceride accumulation occurs. Lipid droplets are extremely abundant in these livers. The present study implicates increased conversion of free fatty acids to triglyceride in the liver and increased hepatic production of very low density lipoproteins (VLDL) in the hamster in the genesis of the hyperglyceridemia characteristic of this species.  相似文献   

2.
Rats with carnitine deficiency due to trimethylhydrazinium propionate (mildronate) administered at 80 mg/100 g body weight per day for 10 days developed liver steatosis only upon fasting. This study aimed to determine whether the transient steatosis resulted from triglyceride accumulation due to the amount of fatty acids preserved through impaired fatty acid oxidation and/or from up-regulation of lipid exchange between liver and adipose tissue. In liver, mildronate decreased the carnitine content by approximately 13-fold and, in fasted rats, lowered the palmitate oxidation rate by 50% in the perfused organ, increased 9-fold the triglyceride content, and doubled the hepatic very low density lipoprotein secretion rate. Concomitantly, triglyceridemia was 13-fold greater than in controls. Hepatic carnitine palmitoyltransferase I activity and palmitate oxidation capacities measured in vitro were increased after treatment. Gene expression of hepatic proteins involved in fatty acid oxidation, triglyceride formation, and lipid uptake were all increased and were associated with increased hepatic free fatty acid content in treated rats. In periepididymal adipose tissue, mildronate markedly increased lipoprotein lipase and hormone-sensitive lipase activities in fed and fasted rats, respectively. On refeeding, carnitine-depleted rats exhibited a rapid decrease in blood triglycerides and free fatty acids, then after approximately 2 h, a marked drop of liver triglycerides and a progressive decrease in liver free fatty acids. Data show that up-regulation of liver activities, peripheral lipolysis, and lipoprotein lipase activity were likely essential factors for excess fat deposit and release alternately occurring in liver and adipose tissue of carnitine-depleted rats during the fed/fasted transition.  相似文献   

3.
While moderate caloric restriction has beneficial effects on animal health state, fasting may be harmful. The present investigation was designed to test how fasting affects oxidative stress, and to find out whether the effects are opposite to those previously found in caloric restriction studies. We have focused on one of the main determinants of aging rate: the rate of mitochondrial free radical generation. Different parameters related to lipid and protein oxidative damage were also analyzed. Liver mitochondria from rats subjected to 72 h of fasting leaked more electrons per unit of O2 consumed at complex III, than mitochondria from ad libitum fed rats. This increased leak led to a higher free radical generation under state 3 respiration using succinate as substrate. Regarding lipids, fasting altered fatty acid composition of hepatic membranes, increasing the double bond and the peroxidizability indexes. In accordance with this, we observed that hepatic membranes from the fasted animals were more sensitive to lipid peroxidation. Hepatic protein oxidative damage was also increased in fasted rats. Thus, the levels of oxidative modifications, produced either indirectly by reactive carbonyl compounds (Nepsilon- malondialdehyde-lysine), or directly through amino acid oxidation (glutamic and aminoadipic semialdehydes) were elevated due to the fasting treatment in both liver tissue and liver mitochondria. The current study shows that severe food deprivation increases oxidative stress in rat liver, at least in part, by increasing mitochondrial free radical generation during state 3 respiration and by increasing the sensitivity of hepatic membranes to oxidative damage, suggesting that fasting and caloric restriction have different effects on liver mitochondrial oxidative stress.  相似文献   

4.
While moderate caloric restriction has beneficial effects on animal health state, fasting may be harmful. The present investigation was designed to test how fasting affects oxidative stress, and to find out whether the effects are opposite to those previously found in caloric restriction studies. We have focused on one of the main determinants of aging rate: the rate of mitochondrial free radical generation. Different parameters related to lipid and protein oxidative damage were also analyzed. Liver mitochondria from rats subjected to 72 h of fasting leaked more electrons per unit of O2 consumed at complex III, than mitochondria from ad libitum fed rats. This increased leak led to a higher free radical generation under state 3 respiration using succinate as substrate. Regarding lipids, fasting altered fatty acid composition of hepatic membranes, increasing the double bond and the peroxidizability indexes. In accordance with this, we observed that hepatic membranes from the fasted animals were more sensitive to lipid peroxidation. Hepatic protein oxidative damage was also increased in fasted rats. Thus, the levels of oxidative modifications, produced either indirectly by reactive carbonyl compounds (Nepsilon- malondialdehyde-lysine), or directly through amino acid oxidation (glutamic and aminoadipic semialdehydes) were elevated due to the fasting treatment in both liver tissue and liver mitochondria. The current study shows that severe food deprivation increases oxidative stress in rat liver, at least in part, by increasing mitochondrial free radical generation during state 3 respiration and by increasing the sensitivity of hepatic membranes to oxidative damage, suggesting that fasting and caloric restriction have different effects on liver mitochondrial oxidative stress.  相似文献   

5.
The hepatic removal of plasma chylomicrons was determined for rats fed the following diets: a) containing no triglyceride, b) regular chow diet with 4.5% of its mass as lipid and, c) a corn oil-supplemented chow with triglyceride accounting for 20% of the mass. The fractional hepatic uptake of either radiolabeled chylomicrons or a triglyceride emulsion was reciprocally related to the amount of lipid in the diet. The animals receiving only carbohydrate and protein calories had the most active hepatic uptake of particulate triglyceride and were observed to have a significant decrease in the plasma concentration of the C apolipoproteins. The addition of either C-I, C-II, or C-III apoproteins to the triglyceride emulsion prior to intravenous injection produced a significantly lower hepatic triglyceride recovery of emulsions containing apoC-III. When the plasma of animals fed a fat-free diet was supplemented with human C-III-1 apolipoprotein, the distribution into the liver of either enterally administered fatty acid or parenteral triglyceride was diminished. The triglyceride content in the liver of the rats fed fat-free or corn oil-supplemented diets was significantly greater than that of the control rats and composition was somewhat similar to that of lymph triglyceride. The studies indicate an important influence of dietary lipid on both the partition of plasma triglyceride into the liver and the steady state hepatic triglyceride content.  相似文献   

6.
The protective effect of alpha-tocopherol (alpha-Toc), which exerts antioxidant and anti-inflammatory actions, against alpha-naphthylisothiocyanate (ANIT)-induced hepatotoxicity in rats was compared with that of melatonin because orally administered melatonin is known to protect against ANIT-induced hepatotoxicity in rats through its antioxidant and anti-inflammatory actions. Rats intoxicated once with ANIT (75 mg/kg, intraperitoneal (i.p.)) showed liver cell damage and biliary cell damage with cholestasis at 24 h, but not 12 h, after intoxication. ANIT-intoxicated rats received alpha-Toc (100 or 250 mg/kg) or melatonin (100 mg/kg) orally at 12 h after intoxication. The alpha-Toc administration protected against liver cell damage in ANIT-intoxicated rats, while the melatonin administration protected against both liver cell damage and biliary cell damage with cholestasis. ANIT-intoxicated rats had increased hepatic lipid peroxide concentration and myeloperoxidase activity at 12 and 24 h after intoxication. ANIT-intoxicated rats also had increased serum alpha-Toc and non-esterified fatty acid (NEFA) concentrations at 12 and 24 h after intoxication and increased serum triglyceride and total cholesterol concentrations at 24h. The administration of alpha-Toc to ANIT-intoxicated rats increased the hepatic alpha-Toc concentration with further increase in the serum alpha-Toc concentration and attenuated the increased hepatic lipid peroxide concentration and myeloperoxidase activity and serum NEFA concentration at 24 h after intoxication. The melatonin administration did not affect the hepatic alpha-Toc concentration but attenuated the increased hepatic lipid peroxide concentration and myeloperoxidase activity and serum alpha-Toc, NEFA, triglyceride, and total cholesterol concentrations at 24 h after ANIT intoxication. These results indicate that orally administered alpha-Toc protects against ANIT-induced hepatotoxicity in rats possibly through its antioxidant and anti-inflammatory actions less effectively than orally administered melatonin.  相似文献   

7.
Mice fed a high-fat, low-carbohydrate ketogenic diet (KD) exhibit marked changes in hepatic metabolism and energy homeostasis. Here, we identify liver-derived fibroblast growth factor 21 (FGF21) as an endocrine regulator of the ketotic state. Hepatic expression and circulating levels of FGF21 are induced by both KD and fasting, are rapidly suppressed by refeeding, and are in large part downstream of PPARα. Importantly, adenoviral knockdown of hepatic FGF21 in KD-fed mice causes fatty liver, lipemia, and reduced serum ketones, due at least in part to altered expression of key genes governing lipid and ketone metabolism. Hence, induction of FGF21 in liver is required for the normal activation of hepatic lipid oxidation, triglyceride clearance, and ketogenesis induced by KD. These findings identify hepatic FGF21 as a critical regulator of lipid homeostasis and identify a physiological role for this hepatic hormone.  相似文献   

8.
We have studied changes in hepatic mitochondrial efficiency induced by 24-h fasting or acclimation at 29 degrees C, two conditions of reduced thermogenesis. Basal and palmitate-induced proton leak, which contribute to mitochondrial efficiency, are not affected after 24-h fasting, when serum free triiodothyronine decreases significantly and serum free fatty acids increase significantly. In rats at 29 degrees C, in which serum free triiodothyronine and fatty acids decrease significantly, basal proton leak increases significantly, while no variation is found in palmitate-induced proton leak. The present results indicate that mitochondrial efficiency in the liver is not related to a physiological decrease in whole body thermogenesis.  相似文献   

9.
Livers from fed or 24-hr fasted male rats were perfused in a recycling system. VLDL labeled with [1-14C]oleate (95% in triglyceride), produced in separate perfusions of livers from fed rats, was added to the medium as a pulse. Uptake of VLDL 14C-labeled triglyceride by livers from fasted rats was less than that from fed rats regardless of addition of oleate. During the interval in which radioactive triglyceride was taken up, the mass of triglyceride in the medium increased, indicative of the synthesis and net secretion of triglycerides. The rates of secretion of VLDL and uptake of VLDL were both more rapid in livers from fed rats in comparison to those from fasted animals. It was calculated that about 50% of the triglyceride synthesized and secreted by the liver was taken back by livers from fed rats. The VLDL from livers of fasted rats did not contain any apoE detectable by SDS gel electrophoresis or by radioimmunoassay when no fatty acid or 166 mumol of oleic acid was infused. In contrast, apoE comprised 6% of the VLDL apoprotein derived from perfusion of livers from fed animals in the absence of added fatty acid, and 20% when the fed livers were infused with 166 mumol of oleic acid. However, the net output (accumulation) of apoE by fasted liver was only two-thirds that from fed livers. When lipoprotein-free rat plasma containing apoE (4 mg/dl) was used in place of bovine serum albumin, the VLDL secreted by livers from either fed or fasted rats contained apoE and was taken up to a similar extent by such livers. These data suggested that the apoE of the d greater than 1.21 g/ml fraction was transferred to newly secreted VLDL which then stimulated uptake of the VLDL by livers from fasted rats. With further stimulation of secretion of VLDL triglyceride by infusion of 332 mumol of oleic acid/hr, the percent of apoE in the VLDL secreted by livers from fasted rats increased to 20%, which was similar to that of the VLDL produced by livers from fed rats when either 166 or 332 mumol/hr was infused. These data suggest a relationship between rates of hepatic secretion of VLDL (TG) and apoE, and the association of apoE with the secreted VLDL. During fasting, reduced secretion of both VLDL and apoE resulted in a VLDL particle that was considerably diminished in content of apoE and, therefore, that would be taken up by the liver at a reduced rate, in comparison to that observed in the fed animal.  相似文献   

10.
Many animal studies on improvement of lipid metabolism, using dietary components, fast the animals on the final day of the feeding. Although fasting has a significant impact on lipid metabolism, its time-dependent influence is not fully understood. We examined the effects of several fasting times on lipid metabolism. Rats fed with a semisynthetic diet for 2 wk were killed after 0 (9:00?am), 6 (7:00?am–1:00?pm), 9 (0:00?am–9:00?am), and 13?h (8:00?pm–9:00?am) of fasting. Compared to the 0?h group, marked reduction of liver weight and hepatic triacylglycerol content was observed in the 9 and 13?h groups. Activities of hepatic enzymes involved in fatty acid synthesis gradually decreased during fasting. In contrast, drastic time-dependent reduction of gene expression, of the enzymes, was observed. Expression of carnitine palmitoyltransferase mRNA was higher in the fasting groups than in the 0?h group. Our study showed that fasting has a significant impact on several parameters related to lipid metabolism in rat liver.  相似文献   

11.
In rats, a high carbohydrate fat-free (HCFF) diet, given after fasting, induces both hepatic lipogenic and glycogenic enzymes. In the present study, we evaluated the involvement of Kupffer cells in the metabolic events occurring in the liver during the fasting-refeeding transition. Male Wistar rats were fasted for 48 h and received an intravenous injection of either NaCl 0.9% (Gd-) or 10 mg/kg GdCl(3) (Gd+), an inhibitor of Kupffer cells, then fed for 12 h with a HCFF diet. The comparison of colloidal carbon uptake was similar in rats fasted and in rats fasted and then refed a HCFF diet, thus indicating that refeeding does not affect per se Kupffer cell phagocytic activity. The inhibition of Kupffer cells by GdCl(3) did not affect fatty acid synthase (FAS) induction, as shown by the analysis of both FAS mRNA and activity; refeeding a HCFF diet increased the hepatic triglyceride and glycogen content to the same extent in Gd+ and Gd- rats. Our results do not support the involvement of Kupffer cells in the metabolic events occurring in the liver tissue by feeding a HCFF diet after fasting. However, the discussion supports the involvement of Kupffer cells in the modulation of the hepatic lipid metabolism by other nutrients than carbohydrates.  相似文献   

12.
Hepatopathy and hepatomegaly as consequences of prolonged fasting or illnesses are typical clinical features of very long chain acyl-CoA dehydrogenase (VLCACD) deficiency, the most common long-chain fatty acid β-oxidation defect. Supplementation with medium-chain triglycerides (MCTs) is an important treatment measure in these defects, in order to supply sufficient energy. Little is known about the pathogenetic mechanisms leading to hepatopathy. Here, we investigated the effects of prolonged fasting and an MCT diet on liver function. Wild-type (WT) and VLCAD knockout mice were fed with either a regular long-chain triglyceride diet or an MCT diet for 5 weeks. In both groups, we determined liver and blood lipid contents under nonfasting conditions and after 24 h of fasting. Expression of genes regulating peroxisomal and microsomal oxidation pathways was analyzed by RT-PCR. In addition, glutathione peroxidase and catalase activities, as well as thiobarbituric acid reactive substances, were examined. In VLCAD knockout mice fed with a long-chain triglyceride diet, fasting is associated with excessive accumulation of liver lipids, resulting in hepatopathy and strong upregulation of peroxisomal and microsomal oxidation pathways as well as antioxidant enzyme activities and thiobarbituric acid reactive substances. These effects were even evident in nonfasted mice fed with an MCT diet, and were particularly pronounced in fasted mice fed with an MCT diet. This study strongly suggests that liver damage in fatty acid oxidation defects is attributable to oxidative stress and generation of reactive oxygen species as a result of significant fat accumulation. An MCT diet does not prevent hepatic damage during catabolism and metabolic derangement.  相似文献   

13.
1) Thyroidectomized rats were fed with a low iodine diet, injected daily with 0, 0.1, 1.8 or 25 microgram of L-thyroxine/100 g body wt., and compared with intact controls. 2) Plasma protein-bound iodine was decreased in the rats given the 0 and 0.1 microgram doses, unchanged in those given the 1.8 microgram doses, unchanged in those given the 1.8 microgram dose increased in those given the 25 microgram one. 3) The liver content of DNA-P, phospholipid-P, proteins and fatty acids was decreased in the rats that did not receive thyroxine, practically recuperated in those receiving 0.1 microgram and normal in those given 1.8 or 25 microgram of thyroxine. 4) 3 h of starvation produced a reduction in the liver content of total fatty acids that disappeared after 24 h. 5) When fed, liver glycogen concentration was low in the rats given 25 microgram of thyroxine. 6) With starvation, the fall in liver glycogen and blood glucose, and the rise in liver acetyl-CoA and citrate and blood glycerol concentrations were faster in the thyroidectomized rats that did not receive thyroxine than in the other groups. 7) The rise in plasma free fatty acid and blood ketone bodies concentrations were similar in all the groups, the greater level of the first parameter being observed after 6 h of starvation in the rats given 25 microgram of thyroxine and in the second one after 24 h in the rats given either 0.1, 1.8 or 25 microgram of thyroxine. 8) The rapid decrease in the availability of carbohydrate stores with starvation in the thyroidectomized rats could be responsible for their fast call for lipid utilization. The slower response to fasting in the hyperthyroid animals is probably a consequence of their reduced amount of endogenous substrates to be mobilized.  相似文献   

14.
Elevated serum lipids are associated with infections of laboratory rodents with plerocercoids of Spirometra mansonoides. The effect of infection with these larval tapeworms on triglyceride degradation and hepatic de novo fatty acid synthesis was investigated in Syrian hamsters. Serum lipoprotein electrophoresis revealed a consistent elevation in very low density lipoproteins in the infected animals. Lipoprotein lipase activity was enhanced in the infected animals. After seven days of plerocercoid infection the activity of acetyl-CoA carboxylase (E.C. 6.4.1.2) was significantly elevated after 6, 12 and 18 hours of fasting. Fatty acid synthetase was significantly increased after 0, 6, 12, 18 and 24 hours of fasting. Therefore, a chronic insulin-like activity on lipid metabolism of hamsters is associated with plerocercoid infection.  相似文献   

15.
Plasma triglyceride concentrations were significantly lowered by a single feeding of glucose to rats that had been fasted for 22 hr. Three feedings of glucose produced a similar effect. In the glucose-refed animals mobilization of free fatty acids from adipose tissue was impaired more rapidly than hepatic lipogenesis was restored from its low fasting level. These effects of glucose were shown by both a 50% fall in plasma free fatty acid concentration and an 84% decrease in free fatty acid release by isolated epididymal fat pads within 30 min after a single refeeding of glucose. Hepatic lipogenesis from either acetate-1-(14)C or glucose-U-(14)C was not restored even after glucose had been fed three times at hourly intervals. Triton-induced hypertriglyceridemia was used to measure the hepatic triglyceride secretory rate; it was found that glucose refeeding decreased this rate in all but one of several experiments. This decreased secretion rate was sufficient to account for the nearly complete disappearance of triglyceride in very low density lipoproteins (d < 1.019) that occurred within 1 hr after a single glucose intubation.  相似文献   

16.
The effect of ingestion of saline, glucose, and ethanol (isocaloric with the glucose) on the mobilization of radiopalmitate from epididymal fat prelabeled in vivo and the incorporation of the mobilized label into liver lipids was investigated in rats. The mobilization of radiopalmitate from epididymal fat and the incorporation of the mobilized label into liver triglyceride were most markedly elevated by ingestion of ethanol. Increased mobilization and diversion of epididymal adipose tissue fatty acids to liver lipids of ethanol-treated rats were shown also by the close resemblance of the fatty acids of liver triglyceride to the fatty acids of epididymal fat. The amount of radiopalmitate mobilized by the saline-treated rats, comprising approximately a third of that mobilized by the ethanol-treated animals, was larger than the amount mobilized by the rats treated with glucose; most of it was oxidized rather than incorporated into the liver fats. In glucose-treated rats a larger fraction of radiopalmitate mobilized from one prelabeled epididymal pad was diverted to and incorporated into the lipids of the contralateral pad of the same animal. The specific activity of hepatic triglyceride of ethanol- and saline-treated rats was similar and significantly higher than that of animals treated with glucose. These data indicate that the ethanol-induced fatty liver can be attributed to an increased mobilization and incorporation of adipose tissue fatty acids into liver lipid and to an altered hepatic metabolism of fatty acids and triglyceride.  相似文献   

17.
Adult female rats with lesions in the ventromedial hypothalamic area and sham-operated controls were given Triton WR 1339 intravenously after 24 h without food for measurement of liver triacylglycerol secretion rate. Tritiated water was injected for measurement of lipogenesis in liver, perirenal and subcutaneous adipose tissues in vivo. The experiments were performed on unrestrained animals with a chronically implnted venous heart cannula after 24 h without food. By the use of this technique, anesthesia and handling of the animals during the experiments was avoided. The following differences in the lesioned animals compared to the sham-operated controls were found: relative hypertriglyceridemia. A significant increase of triacylglycerol accumulation in the plasma. Increased incorporation of 3H FROM 3H20 into liver fatty acids. The experiments demonstrate that hepatic lipid synthesis during fasting is greater in the lesioned than in the control animals, but not high enough to account for the increased triacylglycerol secretion. A shift in the hepatic metabolism of fatty acids, leading to greater triacylglycerol formation at the expense of other processes is therefore suggested. The possible role of insulin in these metabolic changes is discussed.  相似文献   

18.
BackgroundOssabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model.MethodsOssabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24.ResultsThe NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides.ConclusionsThis report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.  相似文献   

19.
We recently observed that a 24-h fasted group of rats could run longer than an ad libitum fed control group before becoming exhausted. Because of the demonstrated importance of glycogen levels and free fatty acid availability during endurance exercise, we have investigated several parameters of carbohydrate and lipid metabolism in exercised and nonexercised rats that were either fed ad libitum or fasted for 24 h. A 24-h fast depleted liver glycogen, lowered plasma glucose concentration, decreased muscle glycogen levels, and increased free fatty acid and beta-hydroxybutyrate concentrations in plasma. During exercise the fasted group had lower plasma glucose concentration, higher plasma concentration of free fatty acids and beta-hydroxybutyrate, and a lower muscle glycogen depletion rate than did the ad libitum fed group. Since fasted rats were able to continue running even when plasma glucose had dropped to levels lower than those of fed-exhausted rats, it seems unlikely that blood glucose level, per se, is a factor in causing exhaustion. These results suggest that fasting increases fatty acid utilization during exercise and the resulting "glycogen sparing" effect may result in increased endurance.  相似文献   

20.
大量研究表明,高果糖可引起脂肪肝,但对肾脏脂质代谢的影响尚不清楚。该实验研究给予10%果糖水5周后诱导的脂肪肝大鼠肾脏的脂质代谢情况,并探讨其可能机制。将16只雄性SD大鼠随机分为正常组(con)和果糖组(fru),果糖组给予10%(W/V)果糖水,第5N末称体重、取血、处死,检测血浆GLU、TG、TC和INSULIN含量。取肾脏、肝脏和白色脂肪称重,采用形态学方法观察肝脏和肾脏脂质沉积情况,酶法测其TG、TC含量,以Real time—PCR检测肾脏、肝脏中脂质合成和脂质氧化相关基因水平,以Westemblot检测肾、肝细胞核脂质合成转录因子的蛋白表达。结果显示,果糖组大鼠血浆TG、INSULIN明显升高,并出现肥胖体征,肝脏脂质沉积严重,其调控脂质合成的两个关键的转录因子ChREBP和SREBPlcmRNA和核蛋白表达都明显升高,并且它们靶向的脂质合成相关酶FAS、ACCl、SCDlmRNA表达也显著增加。但是,在肾脏中,高果糖没有引起TG含量的变化,调控脂质重新合成的基因和蛋白的表达也未发生变化。因此,与果糖致脂肪肝不同,高果糖饮食并没有造成肾脏的脂质沉积和脂质合成相关基因、蛋白的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号