首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trematolobelia (Campanulaceae: Lobeliodeae) is a genus of semelparous pliestesial pachycaul rosette treelets endemic to the Hawaiian Islands. Eight species are re-cognized. The most widespread is T. macrostachys, found in the Ko‘olau Mountains of O‘ahu and on Moloka‘i and Maui. The remainder are single-island endemics: T. auriculata (Lna‘i); T. grandiflora (Hawai‘i); T. kaalae, comb. et stat. nov. (Wai‘anae Mountains of O‘ahu); T. kauaiensis (Kaua‘i); T. rockii (Moloka‘i); T. singularis (Ko‘olau Mountains of O‘ahu); and T. wimmeri (Hawai‘i).  相似文献   

2.
Lava tube cave ecosystems on the volcanic islands of Hawai‘i support communities of rare and highly specialized cave arthropods. In these cave ecosystems, plant roots, both living and dead, provide the main energy source for cave animals. Loss of deep-rooted plants over caves will affect populations of cave-adapted animals living below. Furthermore, the loss of native plant species will likely eliminate host specific cave animals. Thus, identification of plant roots currently found in caves is necessary for the development of effective management actions that encourage the growth of appropriate deep-rooted plant species, thereby protecting the underlying cave ecosystem. We used molecular techniques to identify plant roots found within cave ecosystems on the islands of Maui and Hawai‘i. Sequences of the internal transcribed spacer (ITS) regions and the 5.8S gene of nuclear ribosomal DNA from cave roots were compared to sequences of known plant species either collected on the surface over the footprint of each cave or to sequences accessioned in GenBank. Roots in the cave ecosystem studied on Maui belonged to two alien tree species: Eucalyptus tereticornis and Grevillea robusta. Within the Hawai‘i cave ecosystem, roots of two plant species were identified: the alien tree G. robusta and the native vine Cocculus orbiculatus. The Maui cave ecosystem supports populations of at least 28 species of arthropods, including eight that are blind obligate cave inhabitants. The Hawai‘i cave ecosystem supports 18 arthropod species, of which three are cave-adapted. Creating protected reserves around biologically significant caves, controlling, and preventing the introduction of harmful invasive plant species within the cave footprint, and encouraging the establishment of deep-rooted native plant species is essential for the continued survival of the unique ecosystems found within Hawaiian lava tube cave systems.  相似文献   

3.
There is an urgent need to develop the underlying theory and principles of “sustainability science,” based on an understanding of the fundamental interactions between nature and humans. This requires a new research and education paradigm that embraces biocomplexity, integrates the physical, biological, and social sciences, and uses a coupled, human–natural systems approach. An initiative aligned with this paradigm and approach, and centered on the Hawaiian Island’s unique mountain-to-sea ecosystems, is developing at the University of Hawai‘i. These ecosystems, extending from upland tropical forests to the fringing coral reefs, correspond to the roughly wedge-shaped catchments, traditionally called ahupua‘a in the Hawaiian language. Despite the collapse of the ahupua‘a system and, tragically, the Native Hawaiian population, its legacy of ecological and cultural stewardship remains. This legacy, and the potential of these ecosystems as microcosms for addressing the core questions of sustainability science, has provided the impetus for a growing number of projects employing a social–ecological systems perspective. An overview of three projects that employ a “learning community” approach and cultural stewardship perspective inspired by the ahupua‘a system is provided. These include the Ecosystems Thrust Area of Hawai‘i EPSCoR, a U.S. National Science Foundation research infrastructure program, focused on ecosystem research and monitoring activities; a sustainability curriculum program, Mālama I Ka ‘Āina, of the College of Education; and a project that builds on programs of the Division of Ecology and Health and its affiliated Asia-Pacific Center for Infectious Disease Ecology, linking ecosystem resilience and infectious diseases.  相似文献   

4.
Deep-sea spiny eels (Notacanthidae) were previously reported from the Hawaiian Archipelago; however, these reports lacked detailed information to confirm the identity of the species. We provide collection and taxonomic data for the earlier records. The first central Pacific specimen of Lipogenys gillii is reported from Hawai’i Island. A record of Notacanthus abbotti from the Hancock Seamounts, at the northern end of the Archipelago, is confirmed. Specimens from Maui, main Hawaiian Islands, previously reported as N. chemnitzii, are reidentified as N. abbotti. The Hawaiian records of notacanthids are the only reports of the family from the Pacific tectonic plate.  相似文献   

5.
Efforts to map coral reef ecosystems in the Hawaiian Archipelago using optical imagery have revealed the presence of numerous scleractinian, zoothanthellate coral reefs at depths of 30–130+ m, most of which were previously undiscovered. Such coral reefs and their associated communities have been recently defined as mesophotic coral ecosystems (MCEs). Several types of MCEs are found in Hawai‘i, each of which dominates a different depth range and is characterized by a unique pattern of coral community structure and colony morphology. Although MCEs are documented near both ends of the archipelago and on many of the islands in between, the maximum depth and prevalence of MCEs in Hawai‘i were found to decline with increasing latitude. The Main Hawaiian Islands (MHI) had significantly deeper and greater percentages of scleractinian coral, and peaks in cover of both scleractinian corals and macroalgae occurred within depth bins 20 m deeper than in the Northwestern Hawaiian Islands (NWHI). Across the archipelago, as depth increased the combined percentage of living cover of mega benthic taxa declined sharply with increasing depth below 70 m, despite the widespread availability of hard substrate.  相似文献   

6.
Invasive plants that fix nitrogen can alter nutrient availability and thereby community dynamics and successional trajectories of native communities they colonize. Morella cerifera (Myricaceae) is a symbiotic nitrogen fixer originally from the southeastern U.S. that is colonizing native-dominated vegetation on a young lava flow near Hilo, Island of Hawai‘i, where it increases total and biologically available soil nitrogen and increases foliar nitrogen concentrations in associated individuals of the native tree Metrosideros polymorpha. This invasion has the potential to alter the few remaining native-dominated lowland forest ecosystems in windward Hawai‘i.  相似文献   

7.
8.
Paleoenvironmental and archaeological investigations from the ’Ewa Plain of O’ahu provide insight into the problem of understanding lowland native forest loss in Hawai’i. Data from pollen analysis of a pond core record, avian paleontology, and archeology, document a precipitous decline of the native forest starting before Polynesian settlement on the ’Ewa Plain but after Polynesian colonization of O’ahu. It is hypothesized that rats, introduced by Polynesian colonizers, increased exponentially in the absence of significant predators or competitors, feeding on a largely endemic vegetation that had evolved in the absence of mammalian predators. Rats radiated ahead of human colonizers on O’ahu, eating their way through the vegetation, perhaps before the colonizers had encountered much of the pristine lowland forest into which the rats had radiated. This hypothesis is supported by several observations, including the almost complete absence of extinct or extirpated avian faunal remains in archaeological deposits, the present distribution of endemic vegetation in Hawai’i, rat ecology, population biology, and other evidence.
J. Stephen AthensEmail:
  相似文献   

9.
The geologic history of a region can significantly impact the development of its flora and fauna, with past events shaping community patterns and evolutionary trajectories of species. In this context, islands are excellent “natural laboratories” for studying the fundamental processes of evolution due to their discrete geographical nature and dynamic geologic histories. An island system meeting these criteria is the Hawaiian Archipelago, which is ideal for testing how island geologic history influences the processes leading to population genetic variation and differentiation. One Hawaiian endemic whose evolutionary history is closely tied to the geology of the islands is the anchialine atyid shrimp Halocaridina, whose mitochondrial cytochrome oxidase I (COI) gene is hypothesized to be evolving at the rate of 20% per million years. To validate this rapid evolutionary rate, time since divergence estimates between geographically close, yet genetically distinct, populations were calculated for Halocaridina from anchialine habitats on the islands of Hawai’i, Maui, and O’ahu. On the younger (i.e., <1.5 million years) islands of Hawai’i and Maui, where all anchialine habitats occur in basalt, application of the Halocaridina molecular clock identified a strong correlation between levels of genetic divergence and the geologic age of the region inhabited by those populations. In contrast, this relationship weakened when similar analyses were conducted for Halocaridina from limestone anchialine habitats on the older (i.e., >2.75 million years) island of O’ahu. These results suggest geologic age, basin origin and/or composition are important factors that should be taken into consideration when conducting molecular clock analyses on anchialine flora and fauna as well as island populations in general.  相似文献   

10.
Eight native Iranian almond species from three sections, ‘Euamygdalus’ (Prunus communis; Prunus eleagnifolia and Prunus orientalis); ‘Lycioides’ (Prunus lycioides and Prunus reuteri) and ‘Spartioides’ (Prunus arabica, Prunus glauca and Prunus scoparia) were in vitro screened for drought tolerance using sorbitol and polyethylene glycol (PEG) as an osmoticum. Different levels of water stress were induced using five concentrations of either sorbitol or polyethylene glycol in Woody Plant Medium (WPM). Water potential of various media ranged from −0.80 to −2.05 MPa and water stress in culture medium adversely affected plantlet growth. Wild species from ‘Spartioides’ were less affected than ‘Lycioides’ and ‘Euamygdalus’. At the same level of water potential, sorbitol had lower adverse effects than PEG; the latter being severe. Prunus × sorbitol and Prunus × PEG interactions were significant. At 0.2 M sorbitol and 0.003 M PEG, ‘Spartioides’ produced significantly more roots with higher total root length and root volume, as well as root-dry weight than those of ‘Lycioides’ and ‘Euamygdalus.’ It is concluded that in vitro screening of native Iranian almond species under specific and limited water-stress conditions may provide a system for effectively differentiating the wild species of almond for their expected root mass production under field conditions.  相似文献   

11.
Invasive species have had devastating impacts on the fauna and flora of the Hawaiian Islands. While the negative effects of some invasive species are obvious, other species are less visible, though no less important. Aphids (Homoptera: Aphididae) are not native to Hawai’i but have thoroughly invaded the Island chain, largely as a result of anthropogenic influences. As aphids cause both direct plant feeding damage and transmit numerous pathogenic viruses, it is important to document aphid distributions and ranges throughout the archipelago. On the basis of an extensive survey of aphid diversity on the five largest Hawaiian Islands (Hawai’i, Kaua’i, O’ahu, Maui, and Moloka’i), we provide the first evidence that invasive aphids feed not just on agricultural crops, but also on native Hawaiian plants. To date, aphids have been observed feeding and reproducing on 64 native Hawaiian plants (16 indigenous species and 48 endemic species) in 32 families. As the majority of these plants are endangered, invasive aphids may have profound impacts on the island flora. To help protect unique island ecosystems, we propose that border vigilance be enhanced to prevent the incursion of new aphids, and that biological control efforts be renewed to mitigate the impact of existing species.  相似文献   

12.
The native green macroalga Dictyosphaeria cavernosa dominated most of the reef slope habitat in Kāne‘ohe Bay, Hawai‘i for 40 years prior to 2006 and had displaced corals from the habitats they created. This has been one of the most oft-cited examples of a phase shift occurring on a coral reef. After decades of relatively constant, high abundance of the alga, percent cover declined dramatically throughout the bay between February and June 2006. The sudden decrease in cover of this alga appears to be the result of an unusually protracted cloudy, rainy period in March 2006, which may have reduced irradiance and caused the alga to lose weight. Corals and red macroalgae living at the same depths and in some of the same habitats were apparently not affected by this 42-day period of rain and overcast skies. Competition between corals and D. cavernosa for space on reef slopes has been virtually eliminated by the death of this alga, but the unstable rubble formations, which remain in much of the area formerly covered by D. cavernosa may not be conducive to rapid increase in cover by the remaining corals or to establishment by coral recruits. Two years later, there was still no recovery of D. cavernosa. This represents a rare example of decline in macroalgal dominance on a reef and a partial reversal, possibly only temporary, of a phase shift.  相似文献   

13.
When invasive woody plants become dominant, they present an extreme challenge for restoration of native plant communities. Invasive Morella faya (fire tree) forms extensive, nearly monospecific stands in wet and mesic forests on the Island of Hawai’i. We used logging, girdling, and selective girdling over time (incremental girdling) to kill stands of M. faya at different rates, with the objective of identifying a method that best promotes native forest re-establishment. We hypothesized that rapid canopy opening by logging would lead to establishment of fast-growing, non-native invaders, but that slower death of M. faya by girdling or incremental girdling would increase the establishment by native plants adapted to partial shade conditions. After applying the M. faya treatments, seed banks, seed rain, and plant recruitment were monitored over 3 years. Different plant communities developed in response to the treatments. Increased light and nitrogen availability in the logged treatment were associated with invasion by non-native species. Native species, including the dominant native forest tree, (Metrosideros polymorpha) and tree fern (Cibotium glaucum), established most frequently in the girdle and incremental girdle treatments, but short-lived non-native species were more abundant than native species. A diverse native forest is unlikely to develop following any of the treatments due to seed limitation for many native species, but girdling and incremental girdling promoted natural establishment of major components of native Hawaiian forest. Girdling may be an effective general strategy for reestablishing native vegetation in areas dominated by woody plant invaders.  相似文献   

14.
Through intentional and accidental introduction, more than 100 species of alien Ichneumonidae and Braconidae (Hymenoptera) have become established in the Hawaiian Islands. The extent to which these parasitoid wasps have penetrated native wet forests was investigated over a 1,765 m elevation gradient on windward Hawai’i Island. For >1 year, malaise traps were used to continuously monitor parasitoid abundance and species richness in nine sites over three elevations. A total of 18,996 individuals from 16 subfamilies were collected. Overall, the fauna was dominated by aliens, with 44 of 58 species foreign to the Hawaiian Islands. Ichneumonidae was dominant over Braconidae in terms of both diversity and abundance, comprising 67.5% of individuals and 69.0% of species collected. Parasitoid abundance and species richness varied significantly with elevation: abundance was greater at mid and high elevations compared to low elevation while species richness increased with increasing elevation, with all three elevations differing significantly from each other. Nine species purposely introduced to control pest insects were found, but one braconid, Meteorus laphygmae, comprised 98.0% of this assemblage, or 28.3% of the entire fauna. Endemic species, primarily within the genera Spolas and Enicospilus, were collected almost exclusively at mid- and high-elevation sites, where they made up 22.1% and 36.0% of the total catch, respectively. Overall, 75.9% of species and 96.0% of individuals are inferred to parasitize Lepidoptera larvae and pupae. Our results support previous data indicating that alien parasitoids have deeply penetrated native forest habitats and may have substantial impacts on Hawaiian ecosystems.  相似文献   

15.
Native species richness commonly declines with increasing altitude, but patterns of introduced species richness across altitudinal gradients have been less frequently studied. We surveyed introduced roadside weeds along altitudinal transects ranging from 30 to 4,100 m in Hawai’i, with the objectives of (1) testing the hypothesis that a mass effect due to mixing of tropical and temperate species at mid-elevation promotes a hump-shaped pattern of introduced species richness with altitude, and (2) testing the potential roles of anthropogenic activity, energy (temperature) and water-energy dynamics (productivity-diversity hypothesis) in determining introduced weed richness. A total of 178 introduced weeds were recorded. Introduced weed richness does not decline monotonically with altitude. Rather, mixing of tropical and temperate species helps to maintain high mean richness up to 2,000 m, suggesting a mass effect, but without a distinct richness peak. Patchy occurrence of a transformer species, Pennisetum clandestinum, introduced high variance in richness at mid-elevations. General linear models considering estimated actual evapotranspiration (AET, a measure of energy-water dynamics) together with an index of human activity (distance from urban area or length of major roads) accounted for more variance in introduced weed richness than models with energy alone (temperature) and human activity. Native Hawaiian species richness along roadsides was also weakly correlated with AET but negatively associated with human activity. Our observed association between introduced species richness and AET mirrors patterns reported for native species richness around the world, indicating that AET-richness patterns can develop on a short time scale (on the order of 100 years). To test the generality of introduced weed richness patterns, we tried using the Hawai’i island model to predict weed richness on the neighboring island of Maui. Although weed richness on Maui was under-predicted, the same predictors (human activity and AET) were important on Maui. Scaling for differences in regional human population density or economic activity (both higher on Maui) may allow more accurate and transferable quantitative predictions of introduced weed richness patterns.  相似文献   

16.
Amplified fragment length polymorphisms (AFLP) and targeted simple sequence repeats (SSR) were employed to assess genetic similarity of North American apricots having natural resistance to plum pox virus (PPV) within diversified germplasm including six nondomesticated apricot species. On a dendrogram constructed from 231 AFLP loci, the position of the North American cultivars reflects relatedness to the European apricots and introgression of non-European germplasm as well. The occurrence of diagnostic AFLP markers supports an introgression of Chinese germplasm into the North American PPV resistant assortment and supports a different breeding history for ‘Stark Early Orange’ (SEO) and Goldrich-Harlayne lineages. Five SSR loci linked to the PPV resistance region on G1 provided evidence that the investigated lineages (SEO and ‘Harlayne’–‘Goldrich’) have the same or related source of resistance introduced presumably from Northern China. Possible introgression of genetic material from nondomesticated apricots P. mandshurica sp, P. sibirica var. davidiana and P. mume sp. was detected and discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Plant regeneration through direct somatic embryogenesis in Aeschynanthus radicans ‘Mona Lisa’ was achieved in this study. Globular somatic embryos were formed directly from cut edges of leaf explants and cut ends or on the surface of stem explants 4 wk after culture on Murashige and Skoog (MS) medium supplemented with N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (TDZ) with α-naphthalene acetic acid (NAA), TDZ with 2,4-dichlorophenoxyacetic acid (2,4-D), or 6-benzylaminopurine (BA) or kintin (KN) with 2,4-D. MS medium containing 9.08 μM TDZ and 2.68 μM 2,4-D resulted in 71% of stem explants producing somatic embryos. In contrast, 40% of leaf explants produced somatic embryos when induced in medium containing 6.81 μM TDZ and 2.68 μM 2,4-D. Somatic embryos matured, and some germinated into small plants on the initial induction medium. Up to 64% of stem explants cultured on medium supplemented with 9.08 μM TDZ + 2.68 μM 2,4-D, 36% of leaf explants cultured on medium containing 6.81 μM TDZ and 2.68 μM 2,4-D had somatic embryo germination before or after transferring onto MS medium containing 8.88 μM BA and 1.07 μM NAA. Shoots elongated better and roots developed well on MS medium without growth regulators. Approximately 30–50 plantlets were regenerated from each stem or leaf explant. The regenerated plants grew vigorously after transplanting to a soil-less substrate in a shaded greenhouse with more than a 98% survival rate. Three months after their establishment in the shaded greenhouse, 500 plants regenerated from stem explants were morphologically evaluated, from which five types of variants that had large, orbicular, elliptic, small, and lanceolate leaves were identified. Flow cytometry analysis of the variants along with the parent showed that they all had one identical peak, indicating that the variant lines, like the parent, were diploid. The mean nuclear DNA contents of the variant lines and their parent ranged from 4.90 to 4.99 pg 2C−1, which were not significantly different statistically. The results suggest that the regenerated plants have a stable ploidy level, and the regeneration method established in this study can be used for rapid propagation of ploidy-stable Aeschynanthus radicans.  相似文献   

18.
Introduced vector-borne diseases, particularly avian malaria (Plasmodium relictum) and avian pox virus (Avipoxvirus spp.), continue to play significant roles in the decline and extinction of native forest birds in the Hawaiian Islands. Hawaiian honeycreepers are particularly susceptible to avian malaria and have survived into this century largely because of persistence of high elevation refugia on Kaua‘i, Maui, and Hawai‘i Islands, where transmission is limited by cool temperatures. The long term stability of these refugia is increasingly threatened by warming trends associated with global climate change. Since cost effective and practical methods of vector control in many of these remote, rugged areas are lacking, adaptation through processes of natural selection may be the best long-term hope for recovery of many of these species. We document emergence of tolerance rather than resistance to avian malaria in a recent, rapidly expanding low elevation population of Hawai‘i ‘Amakihi (Hemignathus virens) on the island of Hawai‘i. Experimentally infected low elevation birds had lower mortality, lower reticulocyte counts during recovery from acute infection, lower weight loss, and no declines in food consumption relative to experimentally infected high elevation Hawai‘i ‘Amakihi in spite of similar intensities of infection. Emergence of this population provides an exceptional opportunity for determining physiological mechanisms and genetic markers associated with malaria tolerance that can be used to evaluate whether other, more threatened species have the capacity to adapt to this disease.  相似文献   

19.
Transmission of avian malaria in the Hawaiian Islands varies across altitudinal gradients and is greatest at elevations below 1500 m where both temperature and moisture are favorable for the sole mosquito vector, Culex quinquefasciatus, and extrinsic sporogonic development of the parasite, Plasmodium relictum. Potential consequences of global warming on this system have been recognized for over a decade with concerns that increases in mean temperatures could lead to expansion of malaria into habitats where cool temperatures currently limit transmission to highly susceptible endemic forest birds. Recent declines in two endangered species on the island of Kaua'i, the ‘Akikiki (Oreomystis bairdi) and ‘Akeke'e (Loxops caeruleirostris), and retreat of more common native honeycreepers to the last remaining high elevation habitat on the Alaka'i Plateau suggest that predicted changes in disease transmission may be occurring. We compared prevalence of malarial infections in forest birds that were sampled at three locations on the Plateau during 1994–1997 and again during 2007–2013, and also evaluated changes in the occurrence of mosquito larvae in available aquatic habitats during the same time periods. Prevalence of infection increased significantly at the lower (1100 m, 10.3% to 28.2%), middle (1250 m, 8.4% to 12.2%), and upper ends of the Plateau (1350 m, 2.0% to 19.3%). A concurrent increase in detections of Culex larvae in aquatic habitats associated with stream margins indicates that populations of the vector are also increasing. These increases are at least in part due to local transmission because overall prevalence in Kaua'i ‘Elepaio (Chasiempis sclateri), a sedentary native species, has increased from 17.2% to 27.0%. Increasing mean air temperatures, declining precipitation, and changes in streamflow that have taken place over the past 20 years are creating environmental conditions throughout major portions of the Alaka'i Plateau that support increased transmission of avian malaria.  相似文献   

20.
This study investigated the morphology, severity, and distribution of growth anomalies (GAs) in the coral, Montipora capitata, from Wai‘ōpae tide pools, southeast Hawai‘i Island. A macro-image analysis of skeletal microstructure placed GAs into two definable categories; Type A and Type B. Type A GAs had polyp density reduced by 43.05 ± 0.80% (mean ± SE) compared to healthy M. capitata tissue, with many fused and protrusive tuberculae. Type B GAs had no discernable polyps or calices and fused protuberant coenosteum. The prevalence of Type A and Type B GAs among all M. capitata colonies (n = 1,093) in 8 tide pools at Wai‘ōpae was 22.1% (range 2.8–33.7%) and 8.2% (range 0.0–16.9%), respectively. The proportion of colony surface area occupied by GA (relative GA cover) was quantified to assess the severity of this disease among all surveyed colonies. The relative GA cover was significantly greater on colonies larger than 1 m in diameter than smaller colonies and in the central portion of colonies than in the periphery. Furthermore, relative GA cover was negatively related to water motion (R 2 = 0.748, P < 0.01). Developing field diagnostic criteria of M. capitata GA allowed for a detailed epizootiological assessment that determined several cofactors associated with disease severity. Such epizootiological analysis is applicable to future studies of GAs elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号