首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is composed of small subunits (SSs) encoded by rbcS on the nuclear genome and large subunits (LSs) encoded by rbcL on the chloroplast genome, and it is localized in the chloroplast stroma. Constitutive knockdown of the rbcS gene reportedly causes a reduction in LS quantity and the level of translation in tobacco and the unicellular green alga Chlamydomonas. Constitutively knockdown of the rbcS gene also causes a reduction in photosynthesis, which influences the expression of photosynthetic genes, including the rbcL gene. Here, to investigate the influence of the knockdown of the rbcS gene on the expression of the rbcL gene under normal photosynthetic conditions, we generated transgenic tobacco plants in which the amount of endogenous rbcS mRNA can be reduced by inducible expression of antisense rbcS mRNA with dexamethasone (DEX) treatment at later stages of growth. In already expanded leaves, after DEX treatment, the level of photosynthesis, RuBisCO quantity and the chloroplast ultrastructure were normal, but the amount of rbcS mRNA was reduced. An in vivo pulse labeling experiment and polysome analysis showed that LSs were translated at the same rate as in wild-type leaves. On the other hand, in newly emerging leaves, the rbcS mRNA quantity, the level of photosynthesis and the quantity of RuBisCO were reduced, and chloroplasts failed to develop. In these leaves, the level of LS translation was inhibited, as previously described. These results suggest that LS translation is regulated in an SS-independent manner in expanded leaves under normal photosynthetic conditions.  相似文献   

2.
The genes encoding for the large (rbcL) and small (rbcS) subunits of ribulose-1,5-bisphosphate carboxylase (RuBisCO) were cloned from the obligate autotroph Thiobacillus ferrooxidans, a bacterium involved in the bioleaching of minerals. Nucleotide sequence analysis of the cloned DNA showed that the two coding regions are separated by a 30-bp intergenic region, the smallest described for the RuBisCO genes. The rbcL and rbcS genes encode polypeptides of 473 and 118 amino acids, respectively. Comparison of the nucleotide and amino acid sequences with those of the genes for rbcL and rbcS found in other species demonstrated that the T. ferrooxidans genes have the closest degree of identity with those of Chromatium vinosum and of Alvinoconcha hessleri endosymbiont. Both T. ferrooxidans enzyme subunits contain all the conserved amino acids that are known to participate in the catalytic process or in holoenzyme assembly.  相似文献   

3.
Two sets of genes for the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) were detected in the photosynthetic purple sulfur bacterium Chromatium vinosum by hybridization analysis with RuBisCO gene probes, cloned by using the lambda Fix vector, and designated rbcL-rbcS and rbcA-rbcB. rbcL and rbcA encode the large subunits, and rbcS and rbcB encode the small subunits. rbcL-rbcS was the same as that reported previously (A. M. Viale, H. Kobayashi, T. Takabe, and T. Akazawa, FEBS Lett. 192:283-288, 1985). A DNA fragment bearing rbcA-rbcB was subcloned in plasmid vectors and sequenced. We found that rbcB was located 177 base pairs downstream of the rbcA coding region, and both genes were preceded by plausible procaryotic ribosome-binding sites. rbcA and rbcD encoded polypeptides of 472 and 118 amino acids, respectively. Edman degradation analysis of the subunits of RuBisCO isolated from C. vinosum showed that rbcA-rbcB encoded the enzyme present in this bacterium. The large- and small-subunit polypeptides were posttranslationally processed to remove 2 and 1 amino acid residues from their N-termini, respectively. Among hetero-oligomeric RuBisCOs, the C. vinosum large subunit exhibited higher homology to that from cyanobacteria, eucaryotic algae, and higher plants (71.6 to 74.2%) than to that from the chemolithotrophic bacterium Alcaligenes eutrophus (56.6%). A similar situation has been observed for the C. vinosum small subunit, although the homology among small subunits from different organisms was lower than that among the large subunits.  相似文献   

4.
5.
6.
Antibodies to the large and small subunits of ribulose-bisphosphate carboxylase-oxygenase (RuBisCO; EC 4.1-1.39) and a putative binding protein (PBP) for RuBisCO from Chromatium vinosum have been used to localize these proteins in thin sections. Immunogold techniques employing single and double antibodies establish that RuBisCO and the RuBisCO PBP are concentrated in the cell envelope of C. vinosum.Abbreviations kDa kilodalton - L large subunit of RuBisCO - PBP putative binding protein of RuBisCO - RuBisCO ribulose-bisphosphate carboxylase-oxygenase - S small subunit of RuBisCO To whom correspondence should be addressed.  相似文献   

7.
The small subunit (SS) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a nuclear gene-encoded protein that is imported into chloroplasts where it assembles with the large subunit (LS) after removal of the transit peptide to form Rubisco. We have explored the possibility that the severe deficiency in photosynthesis exhibited in nuclear transgenic tobacco (line alpha5) expressing antisense rbcS coding DNA that results in low SS and Rubisco protein content [Rodermel et al. (1988) Cell 55: 673] could be complemented by introducing a copy of the rbcS gene into its plastid genome through chloroplast transformation. Two independent lines of transplastomic plants were generated, in which the tobacco rbcS coding sequence, either with or without the transit sequence, was site-specifically integrated into the plastid genome. We found that compared with the antisense plants, expression of the plastid rbcS gene in the transplastomic plants resulted in very high mRNA abundance but no increased accumulation of the SS and Rubisco protein or improvement in plant growth and photosynthesis. Therefore, there is a limitation in efficient translation of the rbcS mRNA in the plastid or an incorrect processing and modification of the plastid-synthesized SS protein that might cause its rapid degradation.  相似文献   

8.
9.
Ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco) located in the chloroplast is the most abundantprotein in the leaves of light-grown plants. This enzymecatalyzes the first step in net photosynthetic CO2 fixationand photorespiration. The native Rub…  相似文献   

10.
野生大豆rbcS基因的克隆及结构分析   总被引:8,自引:0,他引:8  
核酮糖1,5二磷酸羧化酶(Rubisco,E.C.4.1.1.39)是光合碳代谢中的关键酶,也是植物中研究最为广泛深入的一种酶。高等植物的Rubisco大、小亚基分别由叶绿体和核基因组编码。迄今已有几十种光合生物的Rubisco大、小亚基的基因(rbcL、rbcS)结构得到阐明[1]。在高等植物中rbcS基因由多基因家族编码,结构较为复杂,但它同时又是一种相对保守的基因,且同一物种内各rbcS基因成员是协同进化的,因此rbcS基因适合于植物分子进化及系统分类的研究[2]。我国是栽培大豆(Glyc…  相似文献   

11.
About 1 kb fragment of rbcS (ribulose 1, 5-bisphosphate carboxylase small subunit) gene in wild soybean (Glycine soja, Ji 50017) was amplified from total DNA by PCR assay. Sequence analysis of the fragment indicated that 1089 bp sequenced included the whole coding region for Rubisco small snbunit. The rbcS gene in wild soybean encoded a precursor composed of a transit peptide of 55 amino acids and a mature protein of 123 amino acids. There were two introns found in the rbcS gene as other dicotyledonous species previously sequenced. Comparison of DNA sequences showed high degree homology of rbcS genes between wild soybean and cultivated soybean (Glycine max var. wayne). Some changes of amino acids emerged from the diverse nucleotides did not affect the function of the small subunit. These results may contribute some basic data in molecular biology to study the origin and evolution of soybean.  相似文献   

12.
13.
Of the eight nuclear genes in the plant multi-gene family which encodes the small subunit (rbcS) of Petunia (Mitchell) ribulose bisphosphate carboxylase, one rbcS gene accounts for 47% of the total rbcS gene expression in petunia leaf tissue. Expression of each of five other rbcS genes is detected at levels between 2 and 23% of the total rbcS expression in leaf tissue, while expression of the remaining two rbcS genes is not detected. There is considerable variation (500-fold) in the levels of total rbcS mRNA in six organs of petunia (leaves, sepals, petals, stems, roots and stigmas/anthers). One gene, SSU301, showed the highest levels of steady-state mRNA in each of the organs examined. We discuss the differences in the steady-state mRNA levels of the individual rbcS genes in relation to their gene structure, nucleotide sequence and genomic linkage.  相似文献   

14.
Pyrenoid proteins and ribulose-1,5-bisphosphate carboxylase-oxygenase(RuBisCO) in the green alga Bryopsis maxima were purified tohigh degrees and their peptide compositions were studied bySDS-polyacrylamide gel electrophoresis. RuBisCO had a largesubunit of 50 kDa and a small one of 16 kDa. The apparent molecularweight of the purified RuBisCO was estimated as 460 kDa by gelfiltration. Pyrenoid proteins had two major polypeptides: 52kDa and 17 kDa. The peptide map of the 52 kDa pyrenoid polypeptidecoincided well with that of the large subunit of RuBisCO, stronglysuggesting that the major component of the pyrenoid of thisalga was RuBisCO. We attempted to survey the distribution ofRuBisCO in the chloroplasts. The results suggested that muchof the RuBisCO of Bryopsis maxima was localized in the pyrenoid.The pyrenoid also contained more than 10 minor polypeptidesnot found in the RuBisCO fraction. The minor polypeptides comprisedabout 15% of the total pyrenoid protein and differed from thepolypeptides of the thylakoid membranes and from those foundin the starch grains surrounding the pyrenoid. (Received February 3, 1984; Accepted July 21, 1984)  相似文献   

15.
Various structural and functional properties of ribulose 1,5-bisphosphate carboxylase/ oxygenase (RuBisCO) isolated from the halophilic cyanobacterium (blue-green alga) Aphanothece halophytica were reexamined. The ready dissociation of this algal RuBisCO during sedimentation in a linear sucrose density gradient was observed. Low NaCl concentrations promote the dissociation of small subunit (B) from the original native enzyme molecule as evidenced by the sucrose density gradient centrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is thus possible that the intracellular osmoticum of A. halophytica might influence the structural integrity and activity of RuBisCO. The low residual carboxylase activity ascribed to the catalytic core, an oligomer form of the large subunit (A) apparently deficient in small subunit (B), was found to be markedly stimulated by a protein component which appears identical to subunit B. The purification and structural characterization of the catalytic core and subunit B were attempted by step-wise column chromatography on DEAE-cellulose, Utrogel AcA 34, Sephadex G-75, and hydroxylapatite, and at the final stage each component was purified to near homogeneity, although the catalytic core is still associated with a small quantity of subunit B. The addition of subunit B to the catalytic core does not alter the Km (HCO3?, RuBP) values, but Vmax values are markedly enhanced. Sucrose density gradient centrifugation gave a value of 16 S for the catalytic core. The molecular weights of the monomeric forms of the catalytic core (subunit A) and subunit B were 5.0 × 104 and 1.4 × 104, respectively.  相似文献   

16.
The catalytic core (A8) and small subunit (B) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) were isolated from two species of cyanobacteria (Aphanothece halophytica and Synechococcus ACMM 323) as well as from the photosynthetic purple sulfur bacterium, Chromatium vinosum. The subunit B is essential for the activity of all three enzymes. The heterologous hybridization of RuBisCO molecules from the three organisms was attempted and the reconstitution of the catalytically active hybrid was achieved between A8 derived from either Aphanothece or Synechococcus and subunit B from Aphanothece, Synechococcus or Chromatium. However, reconstitution of the enzymically active hybrid between A8 from Chromatium and B subunits from the cyanobacteria could not be achieved. Experiments by using high performance liquid column chromatography also showed the formation of a heterologous hybrid possessing RuBP carboxylase activity.  相似文献   

17.
为将不同启动子用于转基因水稻的研究,从武运粳8号水稻中克隆了Rubisco小亚基基因(rbcS)的5'上游调控区,构建了由rbcS启动子引导的GUS融合基因,并经农杆菌介导导入到水稻中.对转基因水稻植株中GUS活性的定性与定量测定结果表明,rbcS启动子可驱动GUS报告基因在转基因水稻植株叶片和叶鞘内的叶肉细胞中特异性高效表达,而在茎、根和种子等器官中不表达或表达活性极弱,表现出明显的组织与细胞特异性.结果还表明,光诱导处理可明显提高rbcS启动子启动的外源基因的表达量.  相似文献   

18.
Expression of rbcS genes encoding small subunit of rubisco, most abundant protein in green tissue, is regulated by at least three parameters--tissue type, light conditions and stage of development. One of the green tissue-specific promoters of rbcS gene family was isolated from pigeonpea by PCR. Expression of uidA gene encoding beta-glucuronidase in the transgenic tobacco plants under the control of pigeonpea rbcS promoter, clearly showed that this promoter was as strong as pea rbcS3A promoter characterized earlier. Study of the sequence similarity with pea rbcS3A promoter, especially the region (boxes I and III) that is required for rbcS3A expression, showed more than 50% divergence. In contrast, pigeonpea promoter sequence isolated in the present study was more similar to that of spinach and rice rbcS promoters.  相似文献   

19.
20.
Benzyladenine promoted rapid accumulation of mRNAs that encodedthe small subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase(RuBisCO) and light-harvesting chlorophyll a/b protein in etiolatedcucumber cotyledons, but only after prior incubation of thecotyledons in water. However, benzyladenine hardly affectedthe level of mRNA for the large subunit of RuBisCO. 1 Present address: Shonan Junior College, Yokosuka, Kanagawa238, Japan (Received September 3, 1990; Accepted March 4, 1991)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号